在ML.NET中使用LlamaTokenizer加载Phi-3.5-mini模型的Tokenizer
2025-05-25 02:32:40作者:戚魁泉Nursing
在自然语言处理任务中,Tokenizer是将文本转换为模型可处理格式的关键组件。对于微软开源的Phi-3.5-mini模型,虽然它是一个独立的语言模型,但其Tokenizer实现与Llama模型共享相同的架构。
Tokenizer兼容性说明
Phi-3.5-mini-instruct模型使用的是与Llama系列模型相同的Tokenizer实现。这意味着我们可以直接使用ML.NET中的LlamaTokenizer来处理Phi-3.5-mini模型的文本分词任务。
实现步骤
-
获取Tokenizer模型文件: 首先需要从模型仓库中下载tokenizer.model文件,这是Llama/Phi系列模型使用的分词器模型文件。
-
创建Tokenizer实例: 使用ML.NET提供的LlamaTokenizer.Create方法加载模型文件:
// 指定tokenizer.model文件路径
var modelPath = "path/to/tokenizer.model";
// 创建文件流
using var modelStream = File.OpenRead(modelPath);
// 创建LlamaTokenizer实例
var llamaTokenizer = LlamaTokenizer.Create(modelStream);
技术背景
Llama/Phi系列的Tokenizer基于字节对编码(BPE)算法,具有以下特点:
- 支持多语言处理
- 包含约32,000个token
- 采用Unicode编码处理特殊字符
- 适合处理代码和自然语言混合的文本
使用建议
- 对于批量文本处理,建议重用Tokenizer实例以提高性能
- 注意处理Tokenizer可能产生的特殊token(如开始/结束标记)
- 不同版本的模型可能使用不同的Tokenizer,建议验证兼容性
通过这种方式,开发者可以方便地在ML.NET生态中使用Phi-3.5-mini等先进语言模型的分词能力,为后续的文本处理任务奠定基础。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217