dissect.cstruct_legacy 使用教程
2024-09-01 17:30:43作者:戚魁泉Nursing
项目介绍
dissect.cstruct_legacy 是一个用于Python的C语言风格结构解析库。它允许用户编写C语言风格的结构定义,并使用这些定义来解析二进制数据,无论是作为文件对象还是字节串。该库的设计非常简单,没有复杂的语法过滤器或预处理/后处理步骤,只需进行结构解析。
项目快速启动
安装
首先,通过pip安装dissect.cstruct_legacy库:
pip install dissect.cstruct_legacy
基本使用
以下是一个简单的示例,展示如何使用dissect.cstruct_legacy解析二进制数据:
from dissect import cstruct
# 定义结构
cdef = """
struct test_union {
char magic[4];
union {
struct {
uint32 a;
uint32 b;
};
struct {
char b[8];
};
};
char c;
};
"""
# 实例化cstruct
c = cstruct.cstruct()
c.load(cdef)
# 解析数据
data = b'ohaideadbeef'
parsed_data = c.test_union(data)
# 输出解析结果
print(parsed_data.magic) # 输出: b'ohai'
print(parsed_data.a) # 输出: 1684633421
print(parsed_data.b) # 输出: b'deadbeef'
应用案例和最佳实践
解析EXT4超级块
你可以从Linux内核源代码中复制EXT4超级块的结构定义,并使用dissect.cstruct_legacy进行解析:
# 假设EXT4超级块的结构定义如下
cdef = """
struct ext4_super_block {
uint32 s_inodes_count;
uint32 s_blocks_count;
// 其他字段...
};
"""
c = cstruct.cstruct()
c.load(cdef)
# 读取EXT4超级块数据
with open('/dev/sda1', 'rb') as f:
super_block_data = f.read(2048) # 读取前2048字节
super_block = c.ext4_super_block(super_block_data)
print(super_block.s_inodes_count) # 输出: 总inode数
print(super_block.s_blocks_count) # 输出: 总块数
解析自定义文件格式
对于自定义文件格式,你可以编写一个简单的结构定义并立即开始解析数据:
cdef = """
struct custom_file_header {
char magic[4];
uint32 version;
uint32 data_size;
// 其他字段...
};
"""
c = cstruct.cstruct()
c.load(cdef)
# 读取自定义文件数据
with open('custom_file.dat', 'rb') as f:
header_data = f.read(16) # 假设头部长度为16字节
header = c.custom_file_header(header_data)
print(header.magic) # 输出: 文件魔数
print(header.version) # 输出: 文件版本
print(header.data_size) # 输出: 数据大小
典型生态项目
dissect.cstruct_legacy通常与其他二进制数据解析工具和库一起使用,例如:
- dissect.util: 提供各种二进制数据解析工具。
- pyfsntfs: 用于解析NTFS文件系统的Python库。
- pytsk3: 用于访问和分析存储介质的工具。
这些项目可以与dissect.cstruct_legacy结合使用,以实现更复杂的二进制数据解析任务。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
409
仓颉编程语言运行时与标准库。
Cangjie
130
422