DiffAE 开源项目使用教程
1. 项目介绍
DiffAE(Diffusion Autoencoders)是一个基于扩散概率模型(DPM)的自动编码器实现。该项目旨在通过扩散模型提取图像的有意义且可解码的表示。DiffAE 能够将任何图像编码为两部分潜在代码:一部分是语义上有意义的线性代码,另一部分捕捉随机细节,从而实现近乎精确的重建。这种能力使得 DiffAE 在处理真实图像的属性操作等挑战性应用时表现出色。
该项目由 Konpat Preechakul、Nattanat Chatthee、Suttisak Wizadwongsa 和 Supasorn Suwajanakorn 开发,并在 CVPR 2022 上进行了口头报告。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 环境。然后,克隆项目仓库并安装依赖项:
git clone https://github.com/phizaz/diffae.git
cd diffae
pip install -r requirements.txt
2.2 快速启动示例
以下是一些快速启动示例,展示了如何使用 DiffAE 进行无条件生成、操作和插值。
2.2.1 无条件生成
使用 sample.ipynb 进行无条件生成:
jupyter notebook sample.ipynb
2.2.2 图像操作
使用 manipulate.ipynb 进行图像操作:
jupyter notebook manipulate.ipynb
2.2.3 图像插值
使用 interpolate.ipynb 进行图像插值:
jupyter notebook interpolate.ipynb
2.3 自定义图像对齐
如果你想对自定义图像进行对齐,可以按照以下步骤操作:
- 将图像放入
imgs目录。 - 运行对齐脚本:
pip install dlib requests
python align.py
对齐后的图像将保存在 imgs_align 目录中。
3. 应用案例和最佳实践
3.1 属性操作
DiffAE 可以对真实图像进行属性操作,例如添加或移除眼镜、改变发型等。以下是一个简单的示例:
# 加载模型和图像
model = load_model('checkpoints/ffhq256_autoenc/last.ckpt')
image = load_image('path_to_image.jpg')
# 编码图像
latent_code = model.encode(image)
# 修改属性(例如添加眼镜)
modified_latent_code = modify_attribute(latent_code, 'glasses', True)
# 解码回图像
modified_image = model.decode(modified_latent_code)
3.2 图像插值
DiffAE 支持在两个真实图像之间进行平滑插值。以下是一个示例:
# 加载两个图像
image1 = load_image('path_to_image1.jpg')
image2 = load_image('path_to_image2.jpg')
# 编码图像
latent_code1 = model.encode(image1)
latent_code2 = model.encode(image2)
# 插值
interpolated_latent_code = interpolate(latent_code1, latent_code2, alpha=0.5)
# 解码回图像
interpolated_image = model.decode(interpolated_latent_code)
4. 典型生态项目
4.1 FFHQ 数据集
FFHQ(Flickr-Faces-HQ)数据集是一个高质量的人脸图像数据集,包含 70,000 张 1024x1024 分辨率的图像。DiffAE 在 FFHQ 数据集上进行了训练,并提供了相应的预训练模型。
4.2 CelebA-HQ 数据集
CelebA-HQ 是 CelebA 数据集的高质量版本,包含 30,000 张 1024x1024 分辨率的图像。DiffAE 也支持在该数据集上进行训练和操作。
4.3 LSUN 数据集
LSUN(Large-scale Scene Understanding)数据集包含多个类别的图像,如卧室、教堂等。DiffAE 提供了在 LSUN 数据集上的训练和操作支持。
通过这些生态项目,DiffAE 展示了其在不同数据集上的广泛应用和强大性能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00