DiffAE 开源项目使用教程
1. 项目介绍
DiffAE(Diffusion Autoencoders)是一个基于扩散概率模型(DPM)的自动编码器实现。该项目旨在通过扩散模型提取图像的有意义且可解码的表示。DiffAE 能够将任何图像编码为两部分潜在代码:一部分是语义上有意义的线性代码,另一部分捕捉随机细节,从而实现近乎精确的重建。这种能力使得 DiffAE 在处理真实图像的属性操作等挑战性应用时表现出色。
该项目由 Konpat Preechakul、Nattanat Chatthee、Suttisak Wizadwongsa 和 Supasorn Suwajanakorn 开发,并在 CVPR 2022 上进行了口头报告。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 环境。然后,克隆项目仓库并安装依赖项:
git clone https://github.com/phizaz/diffae.git
cd diffae
pip install -r requirements.txt
2.2 快速启动示例
以下是一些快速启动示例,展示了如何使用 DiffAE 进行无条件生成、操作和插值。
2.2.1 无条件生成
使用 sample.ipynb 进行无条件生成:
jupyter notebook sample.ipynb
2.2.2 图像操作
使用 manipulate.ipynb 进行图像操作:
jupyter notebook manipulate.ipynb
2.2.3 图像插值
使用 interpolate.ipynb 进行图像插值:
jupyter notebook interpolate.ipynb
2.3 自定义图像对齐
如果你想对自定义图像进行对齐,可以按照以下步骤操作:
- 将图像放入
imgs目录。 - 运行对齐脚本:
pip install dlib requests
python align.py
对齐后的图像将保存在 imgs_align 目录中。
3. 应用案例和最佳实践
3.1 属性操作
DiffAE 可以对真实图像进行属性操作,例如添加或移除眼镜、改变发型等。以下是一个简单的示例:
# 加载模型和图像
model = load_model('checkpoints/ffhq256_autoenc/last.ckpt')
image = load_image('path_to_image.jpg')
# 编码图像
latent_code = model.encode(image)
# 修改属性(例如添加眼镜)
modified_latent_code = modify_attribute(latent_code, 'glasses', True)
# 解码回图像
modified_image = model.decode(modified_latent_code)
3.2 图像插值
DiffAE 支持在两个真实图像之间进行平滑插值。以下是一个示例:
# 加载两个图像
image1 = load_image('path_to_image1.jpg')
image2 = load_image('path_to_image2.jpg')
# 编码图像
latent_code1 = model.encode(image1)
latent_code2 = model.encode(image2)
# 插值
interpolated_latent_code = interpolate(latent_code1, latent_code2, alpha=0.5)
# 解码回图像
interpolated_image = model.decode(interpolated_latent_code)
4. 典型生态项目
4.1 FFHQ 数据集
FFHQ(Flickr-Faces-HQ)数据集是一个高质量的人脸图像数据集,包含 70,000 张 1024x1024 分辨率的图像。DiffAE 在 FFHQ 数据集上进行了训练,并提供了相应的预训练模型。
4.2 CelebA-HQ 数据集
CelebA-HQ 是 CelebA 数据集的高质量版本,包含 30,000 张 1024x1024 分辨率的图像。DiffAE 也支持在该数据集上进行训练和操作。
4.3 LSUN 数据集
LSUN(Large-scale Scene Understanding)数据集包含多个类别的图像,如卧室、教堂等。DiffAE 提供了在 LSUN 数据集上的训练和操作支持。
通过这些生态项目,DiffAE 展示了其在不同数据集上的广泛应用和强大性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C041
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00