DiffAE 开源项目使用教程
1. 项目介绍
DiffAE(Diffusion Autoencoders)是一个基于扩散概率模型(DPM)的自动编码器实现。该项目旨在通过扩散模型提取图像的有意义且可解码的表示。DiffAE 能够将任何图像编码为两部分潜在代码:一部分是语义上有意义的线性代码,另一部分捕捉随机细节,从而实现近乎精确的重建。这种能力使得 DiffAE 在处理真实图像的属性操作等挑战性应用时表现出色。
该项目由 Konpat Preechakul、Nattanat Chatthee、Suttisak Wizadwongsa 和 Supasorn Suwajanakorn 开发,并在 CVPR 2022 上进行了口头报告。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 环境。然后,克隆项目仓库并安装依赖项:
git clone https://github.com/phizaz/diffae.git
cd diffae
pip install -r requirements.txt
2.2 快速启动示例
以下是一些快速启动示例,展示了如何使用 DiffAE 进行无条件生成、操作和插值。
2.2.1 无条件生成
使用 sample.ipynb 进行无条件生成:
jupyter notebook sample.ipynb
2.2.2 图像操作
使用 manipulate.ipynb 进行图像操作:
jupyter notebook manipulate.ipynb
2.2.3 图像插值
使用 interpolate.ipynb 进行图像插值:
jupyter notebook interpolate.ipynb
2.3 自定义图像对齐
如果你想对自定义图像进行对齐,可以按照以下步骤操作:
- 将图像放入
imgs目录。 - 运行对齐脚本:
pip install dlib requests
python align.py
对齐后的图像将保存在 imgs_align 目录中。
3. 应用案例和最佳实践
3.1 属性操作
DiffAE 可以对真实图像进行属性操作,例如添加或移除眼镜、改变发型等。以下是一个简单的示例:
# 加载模型和图像
model = load_model('checkpoints/ffhq256_autoenc/last.ckpt')
image = load_image('path_to_image.jpg')
# 编码图像
latent_code = model.encode(image)
# 修改属性(例如添加眼镜)
modified_latent_code = modify_attribute(latent_code, 'glasses', True)
# 解码回图像
modified_image = model.decode(modified_latent_code)
3.2 图像插值
DiffAE 支持在两个真实图像之间进行平滑插值。以下是一个示例:
# 加载两个图像
image1 = load_image('path_to_image1.jpg')
image2 = load_image('path_to_image2.jpg')
# 编码图像
latent_code1 = model.encode(image1)
latent_code2 = model.encode(image2)
# 插值
interpolated_latent_code = interpolate(latent_code1, latent_code2, alpha=0.5)
# 解码回图像
interpolated_image = model.decode(interpolated_latent_code)
4. 典型生态项目
4.1 FFHQ 数据集
FFHQ(Flickr-Faces-HQ)数据集是一个高质量的人脸图像数据集,包含 70,000 张 1024x1024 分辨率的图像。DiffAE 在 FFHQ 数据集上进行了训练,并提供了相应的预训练模型。
4.2 CelebA-HQ 数据集
CelebA-HQ 是 CelebA 数据集的高质量版本,包含 30,000 张 1024x1024 分辨率的图像。DiffAE 也支持在该数据集上进行训练和操作。
4.3 LSUN 数据集
LSUN(Large-scale Scene Understanding)数据集包含多个类别的图像,如卧室、教堂等。DiffAE 提供了在 LSUN 数据集上的训练和操作支持。
通过这些生态项目,DiffAE 展示了其在不同数据集上的广泛应用和强大性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00