DreamerV3在Atari100K基准测试中的环境步数解析
背景介绍
DreamerV3是一个基于世界模型的强化学习算法,在Atari100K基准测试中表现出色。该基准测试对算法性能评估设定了严格的环境交互步数限制——总共40万步。然而在实际实现中,DreamerV3的配置文件中将训练步数设置为11万步(1.1e5),这与论文描述似乎存在差异。
环境步数与动作重复的关系
这种表面上的不一致实际上源于强化学习中常见的"动作重复"(action repeat)技术。动作重复是指智能体在每个决策步骤中重复执行相同的动作多次,而不是每次都做出新的决策。这在Atari游戏中尤为常见,因为游戏帧率通常高于智能体做出决策的频率。
在DreamerV3的实现中:
- 默认的动作重复次数为4次
- 11万步的训练步数 × 4次动作重复 = 44万环境交互步数
- 略高于基准要求的40万步
设计考量与实现细节
开发者特意将训练步数设置为11万步而非精确的10万步(对应40万环境步),主要基于以下考虑:
-
确保完整训练周期:额外的1万步(对应4万环境步)为算法提供了缓冲空间,确保在达到基准要求的40万步后,系统仍有足够步数完成最后的日志记录和模型保存操作。
-
性能评估准确性:在实际结果报告中,开发者会精确截取前40万环境步对应的性能数据,确保与基准要求严格一致。
-
训练稳定性:略微超出的步数有助于平滑训练结束时的过渡,避免在关键训练阶段突然终止。
技术实现启示
这一设计体现了强化学习系统实现中的几个重要原则:
-
环境交互与实际决策的区分:在计算训练进度时,需要明确区分环境步数(environment steps)和决策步数(agent steps)。
-
基准测试的严格性:虽然训练过程可以略有超出,但最终报告结果必须严格遵守基准测试的规定限制。
-
系统完整性考量:在设置训练参数时,不仅要考虑算法本身的运行,还需为日志记录、模型保存等辅助功能预留资源。
总结
DreamerV3在Atari100K基准测试中的环境步数设置展示了强化学习系统实现中的精细考量。通过动作重复技术和略微超出的训练步数,既满足了基准测试的严格要求,又保证了系统运行的完整性和稳定性。这种设计思路对于其他强化学习项目的实现也具有参考价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00