Ragas项目中的自定义问题生成提示实践指南
2025-05-26 15:57:04作者:滑思眉Philip
在Ragas项目的实际应用中,测试集的生成质量直接影响着评估效果。本文将深入探讨如何通过自定义提示模板来优化TestsetGenerator的问题生成能力,帮助开发者获得更符合需求的测试问题。
核心概念解析
Ragas的TestsetGenerator组件通过大语言模型自动生成评估问题,其核心机制包含三个关键部分:
- 问题生成器(Generator):负责根据文档内容产生候选问题
- 质量评判器(Critic):评估生成问题的质量
- 提示模板(Prompt):指导模型如何生成特定类型的问题
自定义提示模板的实现
开发者可以通过创建Prompt对象来完全定制问题生成的逻辑。一个完整的自定义提示应包含以下要素:
from ragas.llms.prompt import Prompt
custom_prompt = Prompt(
name="custom_qa_prompt",
instruction="生成能够完全基于给定上下文回答的问题,问题应聚焦于指定主题",
examples=[
{
"context": "量子计算利用量子力学原理实现远超经典计算机的运算速度",
"keyphrase": "量子计算",
"question": "量子计算相比经典计算机有哪些优势?"
}
],
input_keys=["context", "keyphrase"],
output_key="question",
output_type="str"
)
集成到测试集生成流程
将自定义提示集成到生成流程需要三个步骤:
- 初始化生成组件:
generator = TestsetGenerator.from_langchain(
generator_llm, # 问题生成模型
critic_llm, # 质量评估模型
embeddings # 文档嵌入模型
)
- 替换默认提示模板:
generator.simple.seed_question_prompt = custom_prompt
- 执行生成过程:
testset = generator.generate_with_langchain_docs(documents, num_questions, {simple: 1.0})
最佳实践建议
-
示例设计原则:
- 包含3-5个典型示例
- 覆盖不同难度级别
- 体现期望的问题风格
-
指令编写技巧:
- 明确指定问题类型(开放/封闭式)
- 定义答案必须完全来自上下文
- 可加入长度限制等约束条件
-
效果验证方法:
- 小批量生成测试
- 人工评估生成质量
- 迭代优化提示模板
典型应用场景
- 领域适配:在医疗、法律等专业领域,通过定制提示生成符合专业术语的问题
- 难度控制:通过调整示例问题复杂度,生成适合不同能力水平的测试集
- 风格统一:确保生成问题符合特定的语言风格或格式要求
通过灵活运用自定义提示功能,开发者可以显著提升Ragas生成的测试集与目标评估场景的匹配度,从而获得更准确的评估结果。这种方法的优势在于既保持了自动化生成的效率,又能融入领域专家的知识指导。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
470
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
718
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
209
84
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1