Stellar Core v22.3.0版本发布:性能优化与稳定性提升
Stellar Core是Stellar区块链网络的核心实现,作为分布式账本技术的开源软件,它负责维护整个网络的共识、交易处理和账本状态。Stellar网络以其高效的跨境支付能力和低交易成本而闻名,而Stellar Core则是支撑这一网络稳定运行的关键组件。
稳定性改进与性能优化
本次v22.3.0版本带来了多项重要的稳定性改进和性能优化措施,这些改进主要集中在以下几个方面:
内存索引优化
开发团队将内存索引从原有结构切换为哈希集合(Hash Set),这一改动显著提升了数据检索效率。哈希集合的平均时间复杂度为O(1),特别适合高频查询场景,能够有效降低核心组件的CPU使用率。
指标系统重构
指标监控系统进行了全面升级,移除了部分昂贵的定时器指标,改为使用趋势计数器。这种改变不仅减少了系统开销,还提供了更直观的性能趋势分析能力。同时,示例配置文件也根据当前实现进行了同步更新,方便运维人员快速配置。
并发控制增强
在多线程环境下,开发团队引入了RAII(Resource Acquisition Is Initialization)模式来管理下载桶工作(DownloadBucketsWork)中的锁机制。这种资源管理方式确保了锁的自动释放,有效防止了死锁和资源泄漏问题。此外,还修复了BucketSnapshotManager中存在的竞态条件,增强了系统的稳定性。
调试与日志改进
修复了调试日志模式下的断言失败问题,使开发人员能够更准确地定位问题。同时清理了LedgerTxn::getHeader的实现,提高了代码的可维护性。特别值得注意的是,当BucketList完全加载到内存中时,系统会自动禁用LTX缓存,这一智能优化减少了不必要的内存消耗。
新功能亮点
离线负载生成模式
新增的负载生成器支持离线预生成负载功能,这对于性能测试和压力测试场景特别有价值。开发人员可以在非生产环境中模拟各种负载情况,提前发现潜在的性能瓶颈。
交易批量广播实验功能
引入了一个实验性标志,允许将交易批量广播到网络。这一功能有望减少网络流量和提高吞吐量,特别是在高负载情况下。虽然目前处于实验阶段,但为未来的性能优化奠定了基础。
测试环境验证简化
新增配置选项允许在测试环境中跳过某些验证器检查,这大大简化了开发和测试流程,加速了迭代周期。需要注意的是,这一功能仅适用于测试环境,生产环境仍保持完整的验证流程。
后台签名验证
交易签名验证现在可以配置为在后台线程中执行,这一改进显著提升了主线程的处理能力,特别是在交易高峰期能够保持系统的响应速度。这种异步处理模式是现代高性能区块链系统的典型优化手段。
底层架构改进
在系统底层,开发团队进行了多项架构级别的优化:
- 从检查有效路径(checkValid)中移除了冗余的加载操作,减少了不必要的I/O开销。
- 全面清理了Overlay网络层的实现,并增加了额外的测试用例,提高了网络通信的可靠性。
- 将clang线程安全静态分析工具集成到核心代码库中,从静态分析层面预防了潜在的线程安全问题。
- 修复了Floodgate::broadcast中的对等认证断言问题,增强了网络广播的健壮性。
这些改进共同构成了v22.3.0版本的核心价值,使Stellar网络在保持去中心化特性的同时,进一步提升了性能和可靠性。对于运行Stellar节点的组织和个人来说,升级到这个版本将获得更稳定的运行体验和更好的性能表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00