Apache Arrow-rs 时间戳处理性能优化分析
2025-07-02 18:28:27作者:傅爽业Veleda
在 Apache Arrow-rs 项目中,时间戳处理是一个常见且关键的操作。最近发现了一个性能优化点,特别是在只需要提取时间部分(如分钟)时,当前实现存在不必要的计算开销。
问题背景
当从时间戳(如 UNIX 时间戳 1599563412)中提取分钟等时间部分时,当前实现会先将时间戳转换为完整的 NaiveDateTime 对象(如 2020-09-08T12:10:12.123456780),然后再提取分钟部分。这个转换过程实际上包含了两个主要步骤:
- 计算天数偏移量(from_num_days_from_ce_opt)
- 计算当天秒数(from_num_seconds_from_midnight_opt)
然而,当只需要提取时间部分(如分钟)时,计算天数偏移量这一步是完全不必要的,造成了性能浪费。
技术细节分析
在 chrono 库的当前实现中,from_timestamp
方法总是会同时计算日期和时间部分:
pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> {
let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY;
let secs = secs.rem_euclid(86_400);
if days < i32::MIN as i64 || days > i32::MAX as i64 {
return None;
}
let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32));
let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs));
Some(date.and_time(time).and_utc())
}
从性能分析(如火焰图)可以看出,在 ClickBench Q18 查询中,date_part
函数花费了大量时间在 from_num_days_from_ce_opt
计算上,而实际上查询只需要提取分钟信息。
优化方案
理想的优化方向是:
- 将时间戳分解逻辑与日期/时间创建逻辑解耦
- 根据实际需要选择性地只计算所需部分
- 对于只需要时间部分的场景,直接计算秒数部分而跳过日期计算
具体来说,可以:
- 实现一个辅助函数,将时间戳分解为天数偏移和当天秒数
- 根据调用方需求,选择性调用
from_num_seconds_from_midnight_opt
或from_num_days_from_ce_opt
- 对于只需要时间部分的场景,完全跳过日期计算
预期收益
这种优化可以显著减少在只需要时间部分(如分钟、小时)时的计算开销。特别是在大数据量处理场景下,如 ClickBench 这样的基准测试中,可以观察到明显的性能提升。
总结
时间处理是数据处理系统中的基础且频繁的操作,对其进行精细优化可以带来整体性能的提升。Apache Arrow-rs 作为高性能数据处理库,对这种基础操作的优化尤为重要。通过解耦时间戳处理逻辑,根据实际需求选择性计算,可以在不影响功能的前提下获得更好的性能表现。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58