Apache Arrow-rs 时间戳处理性能优化分析
2025-07-02 02:33:27作者:傅爽业Veleda
在 Apache Arrow-rs 项目中,时间戳处理是一个常见且关键的操作。最近发现了一个性能优化点,特别是在只需要提取时间部分(如分钟)时,当前实现存在不必要的计算开销。
问题背景
当从时间戳(如 UNIX 时间戳 1599563412)中提取分钟等时间部分时,当前实现会先将时间戳转换为完整的 NaiveDateTime 对象(如 2020-09-08T12:10:12.123456780),然后再提取分钟部分。这个转换过程实际上包含了两个主要步骤:
- 计算天数偏移量(from_num_days_from_ce_opt)
- 计算当天秒数(from_num_seconds_from_midnight_opt)
然而,当只需要提取时间部分(如分钟)时,计算天数偏移量这一步是完全不必要的,造成了性能浪费。
技术细节分析
在 chrono 库的当前实现中,from_timestamp 方法总是会同时计算日期和时间部分:
pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> {
let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY;
let secs = secs.rem_euclid(86_400);
if days < i32::MIN as i64 || days > i32::MAX as i64 {
return None;
}
let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32));
let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs));
Some(date.and_time(time).and_utc())
}
从性能分析(如火焰图)可以看出,在 ClickBench Q18 查询中,date_part 函数花费了大量时间在 from_num_days_from_ce_opt 计算上,而实际上查询只需要提取分钟信息。
优化方案
理想的优化方向是:
- 将时间戳分解逻辑与日期/时间创建逻辑解耦
- 根据实际需要选择性地只计算所需部分
- 对于只需要时间部分的场景,直接计算秒数部分而跳过日期计算
具体来说,可以:
- 实现一个辅助函数,将时间戳分解为天数偏移和当天秒数
- 根据调用方需求,选择性调用
from_num_seconds_from_midnight_opt或from_num_days_from_ce_opt - 对于只需要时间部分的场景,完全跳过日期计算
预期收益
这种优化可以显著减少在只需要时间部分(如分钟、小时)时的计算开销。特别是在大数据量处理场景下,如 ClickBench 这样的基准测试中,可以观察到明显的性能提升。
总结
时间处理是数据处理系统中的基础且频繁的操作,对其进行精细优化可以带来整体性能的提升。Apache Arrow-rs 作为高性能数据处理库,对这种基础操作的优化尤为重要。通过解耦时间戳处理逻辑,根据实际需求选择性计算,可以在不影响功能的前提下获得更好的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134