GPT4V-Image-Captioner 项目安装与使用指南
2024-09-14 06:41:40作者:邵娇湘
1. 项目介绍
GPT4V-Image-Captioner 是一个多功能图像处理工具箱,使用 Gradio 构建,能够通过 GPT-4-vision API、Claude 3 API、cogVLM 模型、Qwen-VL(阿里云)模型或 Moondream 模型对图像进行打标。该项目的主要特点包括:
- 一键安装和使用:简化安装和启动过程。
- 单图和多图批量打标:支持单张图像和多张图像的批量处理。
- 多种模型选择:可以选择在线的 GPT-4-vision、Claude 3 或 Qwen-VL(阿里云)模型,以及本地的 CogVLM 和 Moondream 模型。
- 可视化标签分析与处理:提供图像标签的可视化分析和处理功能。
- 图像预压缩:支持图像的预压缩处理。
- 关键词过滤和水印图像识别:提供关键词过滤和水印图像识别功能。
2. 项目快速启动
2.1 Windows 系统
2.1.1 自动安装
-
克隆仓库:
git clone https://github.com/jiayev/GPT4V-Image-Captioner.git -
运行安装脚本:
install_windows.bat -
启动应用:
start_windows.bat -
打开浏览器: 按住
Ctrl并点击终端中的 URL 地址,或复制 URL 地址在浏览器中打开 Gradio 应用界面。
2.1.2 手动安装
-
克隆仓库:
git clone https://github.com/jiayev/GPT4V-Image-Captioner.git -
检查 Python 安装:
python --version -
创建虚拟环境:
python -m venv myenv -
激活虚拟环境:
myenv\Scripts\activate -
更新 pip:
python -m pip install --upgrade pip -
安装依赖库:
pip install scipy networkx wordcloud matplotlib Pillow tqdm gradio requests -
启动应用:
start_windows.bat
2.2 Linux / macOS 系统
-
克隆仓库:
git clone https://github.com/jiayev/GPT4V-Image-Captioner.git -
进入目录:
cd GPT4V-Image-Captioner -
使脚本可执行:
chmod +x install_linux_mac.sh chmod +x start_linux_mac.sh -
运行安装脚本:
./install_linux_mac.sh -
启动应用:
./start_linux_mac.sh -
打开浏览器: 复制终端中显示的 URL 地址,在浏览器中打开 Gradio 应用界面。
3. 应用案例和最佳实践
3.1 图像打标
GPT4V-Image-Captioner 可以用于对图像进行自动打标,适用于以下场景:
- 社交媒体内容管理:自动为社交媒体上的图片添加标签,便于内容管理和搜索。
- 电子商务产品管理:为电商平台的商品图片自动生成描述和标签,提高产品搜索和展示效果。
- 图像分类和检索:在图像数据库中自动为图像添加标签,便于图像分类和检索。
3.2 图像预处理
项目支持图像的预压缩处理,适用于需要对图像进行预处理的场景:
- 图像存储优化:对图像进行预压缩处理,减少存储空间占用。
- 图像传输优化:对图像进行预压缩处理,提高图像传输效率。
4. 典型生态项目
GPT4V-Image-Captioner 可以与其他图像处理和机器学习项目结合使用,例如:
- Stable Diffusion:结合 Stable Diffusion 进行图像生成和处理。
- Gradio:使用 Gradio 构建用户友好的图像处理界面。
- OpenAI GPT-4-vision:利用 OpenAI 的 GPT-4-vision API 进行图像理解和打标。
通过这些生态项目的结合,可以进一步扩展 GPT4V-Image-Captioner 的功能和应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219