Ragas项目中Context Relevancy指标的演进与替代方案
在Ragas项目的发展过程中,Context Relevancy(上下文相关性)这一评估指标经历了从引入到最终被替代的完整生命周期。这一变化反映了项目团队对评估指标体系的持续优化和改进。
Context Relevancy最初是作为衡量检索增强生成(RAG)系统中上下文信息相关性的重要指标。它的主要功能是评估系统检索到的上下文信息与用户查询之间的匹配程度。高相关性意味着系统能够准确识别并返回与用户需求密切相关的背景信息。
随着项目的深入发展,团队发现Context Relevancy存在一些局限性。首先,它仅关注上下文与查询的相关性,而忽视了这些上下文信息在实际生成回答中的有效利用率。其次,该指标在评估粒度上不够细致,难以全面反映RAG系统的真实表现。
基于这些考量,Ragas团队决定引入Context Utilization(上下文利用率)作为更优的替代方案。这一新指标不仅继承了Context Relevancy的核心功能,还增加了对上下文信息在最终回答中实际使用效果的评估维度。Context Utilization能够更全面地衡量系统从检索到生成的全链路表现,为开发者提供更有价值的反馈。
从技术实现角度看,Context Utilization采用了更先进的评估方法。它通过分析系统生成的回答与检索到的上下文之间的关系,计算上下文信息被有效利用的比例。这种评估方式更贴近实际应用场景,能够帮助开发者发现系统中可能存在的"检索到但不使用"或"过度依赖特定上下文"等问题。
对于已经使用Context Relevancy的用户,迁移到Context Utilization的过程相对平滑。新指标保持了类似的接口设计,同时提供了更丰富的配置选项,允许开发者根据具体需求调整评估标准。这一改进得到了社区用户的积极反馈,被认为是对RAG系统评估框架的重要完善。
这一变更也体现了Ragas项目团队对评估指标质量的严格要求。通过持续优化核心指标,项目保持了在RAG评估领域的领先地位,为开发者提供了更可靠、更全面的系统评估工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00