Presidio项目中Transformers识别器的正确使用方式
问题背景
在使用微软开源的隐私数据识别工具Presidio时,开发者可能会遇到TransformersRecognizer类的使用问题。特别是当尝试使用GLiNER等预训练模型进行实体识别时,可能会遇到"TypeError: SpacyRecognizer.init() got an unexpected keyword argument 'model_path'"这样的错误。
问题根源分析
这个问题的根本原因在于Presidio项目中Transformers集成方式的多样性。Presidio提供了两种主要的方式来集成Transformers模型:
-
TransformersNlpEngine方式:这是官方推荐的标准集成方法,通过NLP引擎的方式将Transformers模型整合到Presidio的分析流程中。
-
自定义EntityRecognizer方式:当需要同时使用多个Transformers模型或有特殊需求时,可以通过创建自定义的实体识别器来包装Transformers模型。
解决方案详解
标准集成方法:TransformersNlpEngine
对于大多数使用场景,特别是只需要单一Transformers模型的情况,推荐使用TransformersNlpEngine。这种方法提供了更好的性能和更简单的配置方式:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.nlp_engine import TransformersNlpEngine
nlp_engine = TransformersNlpEngine(
model_path="urchade/gliner_multi_pii-v1"
)
analyzer = AnalyzerEngine(nlp_engine=nlp_engine)
这种方式会自动处理模型的加载和推理过程,开发者只需要关注业务逻辑即可。
自定义识别器方法
当标准集成方法无法满足需求时,可以考虑创建自定义识别器。需要注意的是,Presidio核心库中的TransformersRecognizer实际上是继承自SpacyRecognizer的简化版本,并不直接支持model_path参数。
如果需要实现自定义的Transformers识别器,可以参考以下模式:
from presidio_analyzer import EntityRecognizer
class CustomTransformersRecognizer(EntityRecognizer):
def __init__(self, model_path, supported_entities):
super().__init__(supported_entities=supported_entities)
self.model = AutoModelForTokenClassification.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
def analyze(self, text, entities, nlp_artifacts=None):
# 实现具体的分析逻辑
pass
关于GLiNER模型的特别说明
对于GLiNER这类专门用于隐私信息识别的预训练模型,Presidio提供了专门的集成方案。开发者可以直接使用预定义的GLiNER识别器,这种方式比通用的Transformers集成更加简单高效:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.predefined_recognizers import GlinerRecognizer
gliner_recognizer = GlinerRecognizer()
analyzer = AnalyzerEngine()
analyzer.registry.add_recognizer(gliner_recognizer)
最佳实践建议
- 对于单一模型场景,优先考虑TransformersNlpEngine方式
- 需要多模型或特殊处理时,才考虑自定义识别器
- 使用GLiNER等专用模型时,直接使用对应的预定义识别器
- 注意不同Presidio版本间的API差异,特别是核心库与示例代码之间可能存在不一致
通过理解这些不同的集成方式和它们适用的场景,开发者可以更有效地利用Presidio结合Transformers模型进行隐私数据识别工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00