Presidio项目中Transformers识别器的正确使用方式
问题背景
在使用微软开源的隐私数据识别工具Presidio时,开发者可能会遇到TransformersRecognizer类的使用问题。特别是当尝试使用GLiNER等预训练模型进行实体识别时,可能会遇到"TypeError: SpacyRecognizer.init() got an unexpected keyword argument 'model_path'"这样的错误。
问题根源分析
这个问题的根本原因在于Presidio项目中Transformers集成方式的多样性。Presidio提供了两种主要的方式来集成Transformers模型:
-
TransformersNlpEngine方式:这是官方推荐的标准集成方法,通过NLP引擎的方式将Transformers模型整合到Presidio的分析流程中。
-
自定义EntityRecognizer方式:当需要同时使用多个Transformers模型或有特殊需求时,可以通过创建自定义的实体识别器来包装Transformers模型。
解决方案详解
标准集成方法:TransformersNlpEngine
对于大多数使用场景,特别是只需要单一Transformers模型的情况,推荐使用TransformersNlpEngine。这种方法提供了更好的性能和更简单的配置方式:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.nlp_engine import TransformersNlpEngine
nlp_engine = TransformersNlpEngine(
model_path="urchade/gliner_multi_pii-v1"
)
analyzer = AnalyzerEngine(nlp_engine=nlp_engine)
这种方式会自动处理模型的加载和推理过程,开发者只需要关注业务逻辑即可。
自定义识别器方法
当标准集成方法无法满足需求时,可以考虑创建自定义识别器。需要注意的是,Presidio核心库中的TransformersRecognizer实际上是继承自SpacyRecognizer的简化版本,并不直接支持model_path参数。
如果需要实现自定义的Transformers识别器,可以参考以下模式:
from presidio_analyzer import EntityRecognizer
class CustomTransformersRecognizer(EntityRecognizer):
def __init__(self, model_path, supported_entities):
super().__init__(supported_entities=supported_entities)
self.model = AutoModelForTokenClassification.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
def analyze(self, text, entities, nlp_artifacts=None):
# 实现具体的分析逻辑
pass
关于GLiNER模型的特别说明
对于GLiNER这类专门用于隐私信息识别的预训练模型,Presidio提供了专门的集成方案。开发者可以直接使用预定义的GLiNER识别器,这种方式比通用的Transformers集成更加简单高效:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.predefined_recognizers import GlinerRecognizer
gliner_recognizer = GlinerRecognizer()
analyzer = AnalyzerEngine()
analyzer.registry.add_recognizer(gliner_recognizer)
最佳实践建议
- 对于单一模型场景,优先考虑TransformersNlpEngine方式
- 需要多模型或特殊处理时,才考虑自定义识别器
- 使用GLiNER等专用模型时,直接使用对应的预定义识别器
- 注意不同Presidio版本间的API差异,特别是核心库与示例代码之间可能存在不一致
通过理解这些不同的集成方式和它们适用的场景,开发者可以更有效地利用Presidio结合Transformers模型进行隐私数据识别工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00