Presidio项目中Transformers识别器的正确使用方式
问题背景
在使用微软开源的隐私数据识别工具Presidio时,开发者可能会遇到TransformersRecognizer类的使用问题。特别是当尝试使用GLiNER等预训练模型进行实体识别时,可能会遇到"TypeError: SpacyRecognizer.init() got an unexpected keyword argument 'model_path'"这样的错误。
问题根源分析
这个问题的根本原因在于Presidio项目中Transformers集成方式的多样性。Presidio提供了两种主要的方式来集成Transformers模型:
-
TransformersNlpEngine方式:这是官方推荐的标准集成方法,通过NLP引擎的方式将Transformers模型整合到Presidio的分析流程中。
-
自定义EntityRecognizer方式:当需要同时使用多个Transformers模型或有特殊需求时,可以通过创建自定义的实体识别器来包装Transformers模型。
解决方案详解
标准集成方法:TransformersNlpEngine
对于大多数使用场景,特别是只需要单一Transformers模型的情况,推荐使用TransformersNlpEngine。这种方法提供了更好的性能和更简单的配置方式:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.nlp_engine import TransformersNlpEngine
nlp_engine = TransformersNlpEngine(
model_path="urchade/gliner_multi_pii-v1"
)
analyzer = AnalyzerEngine(nlp_engine=nlp_engine)
这种方式会自动处理模型的加载和推理过程,开发者只需要关注业务逻辑即可。
自定义识别器方法
当标准集成方法无法满足需求时,可以考虑创建自定义识别器。需要注意的是,Presidio核心库中的TransformersRecognizer实际上是继承自SpacyRecognizer的简化版本,并不直接支持model_path参数。
如果需要实现自定义的Transformers识别器,可以参考以下模式:
from presidio_analyzer import EntityRecognizer
class CustomTransformersRecognizer(EntityRecognizer):
def __init__(self, model_path, supported_entities):
super().__init__(supported_entities=supported_entities)
self.model = AutoModelForTokenClassification.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
def analyze(self, text, entities, nlp_artifacts=None):
# 实现具体的分析逻辑
pass
关于GLiNER模型的特别说明
对于GLiNER这类专门用于隐私信息识别的预训练模型,Presidio提供了专门的集成方案。开发者可以直接使用预定义的GLiNER识别器,这种方式比通用的Transformers集成更加简单高效:
from presidio_analyzer import AnalyzerEngine
from presidio_analyzer.predefined_recognizers import GlinerRecognizer
gliner_recognizer = GlinerRecognizer()
analyzer = AnalyzerEngine()
analyzer.registry.add_recognizer(gliner_recognizer)
最佳实践建议
- 对于单一模型场景,优先考虑TransformersNlpEngine方式
- 需要多模型或特殊处理时,才考虑自定义识别器
- 使用GLiNER等专用模型时,直接使用对应的预定义识别器
- 注意不同Presidio版本间的API差异,特别是核心库与示例代码之间可能存在不一致
通过理解这些不同的集成方式和它们适用的场景,开发者可以更有效地利用Presidio结合Transformers模型进行隐私数据识别工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00