stacks:整洁模型堆叠——构建更强大的预测模型
2024-05-23 07:25:00作者:翟江哲Frasier
stacks 是一个R语言的开源包,它为模型堆叠(Model Stacking)提供了与tidymodels兼容的框架。模型堆叠是一种集成学习方法,通过组合多个模型的预测结果来创建一个全新的模型——即“集成模型”,该模型的预测性能通常优于单一成员。

1、项目简介
stacks允许您利用rsample, parsnip, workflows, recipes和tune等工具定义候选的集成成员,并通过简单的API进行集成。其过程包括:
- 定义候选集成成员。
- 初始化
data_stack对象。 - 将候选成员添加到
data_stack中。 - 使用
blend_predictions()评估如何结合预测。 - 使用
fit_members()拟合具有非零堆叠系数的成员。 - 在新数据上使用
predict()进行预测。
可以通过以下代码安装稳定版本:
install.packages("stacks")
或者通过以下代码安装开发版本:
# install.packages("pak")
pak::pak("tidymodels/stacks")
2、项目技术分析
stacks具备高度通用性,支持以下特性:
- 模型类型:任何在parsnip或扩展包中实现的模型都可以作为集成成员。
- 交叉验证策略:任何rsample或扩展包中的重采样算法都可用于训练模型堆叠。
- 错误指标:任何在yardstick或扩展包中的度量函数都可用于评估模型堆叠及其成员。
stacks使用正则化线性模型来合并预测,但这是众多可能的集成学习算法之一。其他实现还包括h2o和SuperLearner。
3、应用场景
stacks适合于各种数据挖掘和机器学习场景,特别是需要提高预测准确性的场合,如金融风险预测、医疗诊断、市场营销预测、天气预报等领域。在这些领域中,模型堆叠可以有效整合不同模型的优点,减少过拟合并提升泛化能力。
4、项目特点
- 灵活性:支持任意parsnip实现的模型、任意rsample重采样方案以及任意yardstick错误指标。
- 易用性:提供清晰的API设计,使用户能方便地定义模型、添加成员并进行集成。
- 可扩展性:易于与其他tidymodels包集成,利于实现自定义模型和度量。
- 高效性:通过正则化线性模型进行融合,兼顾了复杂性和效率。
想了解更多关于stacks的使用,可以阅读提供的基本示例教程,了解如何使用API构建模型堆叠。现在就加入stacks的行列,让您的预测能力更上一层楼吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
421
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869