stacks:整洁模型堆叠——构建更强大的预测模型
2024-05-23 07:25:00作者:翟江哲Frasier
stacks 是一个R语言的开源包,它为模型堆叠(Model Stacking)提供了与tidymodels兼容的框架。模型堆叠是一种集成学习方法,通过组合多个模型的预测结果来创建一个全新的模型——即“集成模型”,该模型的预测性能通常优于单一成员。

1、项目简介
stacks允许您利用rsample, parsnip, workflows, recipes和tune等工具定义候选的集成成员,并通过简单的API进行集成。其过程包括:
- 定义候选集成成员。
- 初始化
data_stack对象。 - 将候选成员添加到
data_stack中。 - 使用
blend_predictions()评估如何结合预测。 - 使用
fit_members()拟合具有非零堆叠系数的成员。 - 在新数据上使用
predict()进行预测。
可以通过以下代码安装稳定版本:
install.packages("stacks")
或者通过以下代码安装开发版本:
# install.packages("pak")
pak::pak("tidymodels/stacks")
2、项目技术分析
stacks具备高度通用性,支持以下特性:
- 模型类型:任何在parsnip或扩展包中实现的模型都可以作为集成成员。
- 交叉验证策略:任何rsample或扩展包中的重采样算法都可用于训练模型堆叠。
- 错误指标:任何在yardstick或扩展包中的度量函数都可用于评估模型堆叠及其成员。
stacks使用正则化线性模型来合并预测,但这是众多可能的集成学习算法之一。其他实现还包括h2o和SuperLearner。
3、应用场景
stacks适合于各种数据挖掘和机器学习场景,特别是需要提高预测准确性的场合,如金融风险预测、医疗诊断、市场营销预测、天气预报等领域。在这些领域中,模型堆叠可以有效整合不同模型的优点,减少过拟合并提升泛化能力。
4、项目特点
- 灵活性:支持任意parsnip实现的模型、任意rsample重采样方案以及任意yardstick错误指标。
- 易用性:提供清晰的API设计,使用户能方便地定义模型、添加成员并进行集成。
- 可扩展性:易于与其他tidymodels包集成,利于实现自定义模型和度量。
- 高效性:通过正则化线性模型进行融合,兼顾了复杂性和效率。
想了解更多关于stacks的使用,可以阅读提供的基本示例教程,了解如何使用API构建模型堆叠。现在就加入stacks的行列,让您的预测能力更上一层楼吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1