immudb v1.9.6 版本发布:性能优化与SQL功能增强
immudb 是一个开源的不可变数据库,它通过密码学技术确保数据的完整性和可验证性。作为一款专门为需要数据审计和防篡改的场景设计的数据库,immudb 在金融、医疗、供应链等领域有着广泛的应用前景。最新发布的 v1.9.6 版本带来了显著的性能提升和功能增强。
性能优化亮点
本次更新在数据库性能方面做了多项重要改进:
-
JOIN算法优化:SQL层的JOIN操作效率得到显著提升,这对于复杂查询场景下的性能改善尤为明显。新的JOIN算法减少了内存占用和计算开销,使得多表关联查询更加高效。
-
ORDER BY子句优化:查询结果排序的性能得到大幅提升。优化后的排序算法在处理大数据集时表现更为出色,减少了排序操作对系统资源的消耗。
-
内存使用优化:针对多数据库使用场景进行了内存使用优化,显著降低了内存占用。这对于需要同时管理多个数据库实例的环境特别有价值,可以提高整体系统的稳定性和可扩展性。
SQL功能扩展
v1.9.6 版本增强了SQL功能,使其更接近传统关系型数据库的使用体验:
-
LEFT JOIN支持:新增了对LEFT JOIN操作的支持,这使得开发人员可以更方便地执行保留左表所有记录的外连接查询。
-
CASE语句:引入了CASE条件表达式,允许在SQL查询中进行条件判断和分支处理,大大增强了查询的灵活性。
-
VALUES子句:支持SELECT FROM VALUES语法,可以直接在查询中嵌入值列表,简化了临时数据的查询操作。
-
ORDER BY增强:现在支持在ORDER BY子句中使用更复杂的表达式,而不仅仅是简单的列名。
-
主键约束:增加了对单个列的PRIMARY KEY约束支持,强化了数据完整性保障。
查询处理改进
查询引擎进行了多项改进:
-
逻辑运算符优先级:修正了逻辑运算符的优先级问题,使得复杂条件表达式的评估更加准确。
-
常量选择查询优化:优化了只包含常量选择的查询执行路径,这类查询现在可以绕过不必要的处理步骤,直接返回结果。
PostgreSQL兼容性增强
为了提升与PostgreSQL生态的兼容性,v1.9.6版本新增了对几个核心PostgreSQL系统目录表的支持:
- pg_class:存储数据库对象信息的系统表
- pg_namespace:管理命名空间的系统表
- pg_roles:管理数据库角色的系统表
这些改进使得immudb能够更好地兼容PostgreSQL客户端工具和应用程序,简化了从PostgreSQL迁移到immudb的过程。
监控与度量指标
新版本增加了对Prometheus监控系统的支持,提供了以下新的度量指标:
- 索引指标:跟踪索引构建和使用的性能指标
- 复制延迟指标:监控主从复制过程中的延迟情况
这些指标为数据库管理员提供了更全面的系统运行状态视图,有助于及时发现和解决潜在问题。
测试与代码质量
v1.9.6版本在测试覆盖率和代码质量方面也有所提升:
- 索引器测试:增加了针对索引器的测试用例,确保索引功能的稳定性
- 代码质量改进:解决了SonarQube报告中的代码质量问题,提高了代码的可维护性
总结
immudb v1.9.6版本通过性能优化、功能增强和兼容性改进,进一步巩固了其作为不可变数据库的领先地位。特别是SQL功能的扩展,使得开发人员可以更自然地使用immudb,同时保持其核心的数据不可变特性。性能方面的提升使得immudb能够更好地应对大规模数据和高并发场景的需求。对于需要数据完整性保障的应用场景,immudb v1.9.6无疑是一个值得考虑的升级选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00