Django-Chartit 技术文档
2024-12-25 14:45:11作者:温玫谨Lighthearted
1. 安装指南
Django-Chartit 可以从 PyPI 安装。只需执行以下命令:
$ pip install django_chartit
然后,在 settings.py 文件中将 chartit 添加到 INSTALLED_APPS 中。
INSTALLED_APPS = [
# 其他应用...
'chartit',
]
你还需要支持 JavaScript 库。具体细节请参考下文的“所需 JavaScript 库”部分。
2. 项目使用说明
Django-Chartit 用于从数据库中轻松创建图表。图表使用 Highcharts 和 jQuery JavaScript 库渲染。数据库中的数据可以绘制为简单的线图、柱状图、区域图、散点图等多种图表类型。数据还可以作为透视图分组和/或按特定列进行透视。
使用 Django-Chartit 绘制图表或透视图表的步骤如下:
- 创建一个
DataPool或PivotDataPool对象,指定你需要检索的数据和来源。 - 创建一个
Chart或PivotChart对象,使用DataPool或PivotDataPool中的数据绘图。 - 从 Django 视图函数返回
Chart/PivotChart对象到 Django 模板。 - 在 Django 模板中使用
load_charts模板标签,将图表加载到具有特定ids的 HTML 标签中。
3. 项目API使用文档
以下是创建线图的一个简短示例。假设我们有一个包含三个月份和两个城市温度的简单模型:
class MonthlyWeatherByCity(models.Model):
month = models.IntegerField()
boston_temp = models.DecimalField(max_digits=5, decimal_places=1)
houston_temp = models.DecimalField(max_digits=5, decimal_places=1)
假设我们想要创建一个简单的线图,横轴为月份,两个城市的温度作为纵轴:
from chartit import DataPool, Chart
def weather_chart_view(request):
# 步骤 1: 创建一个 DataPool,包含我们想要检索的数据。
weatherdata = DataPool(
series=[
{
'options': {
'source': MonthlyWeatherByCity.objects.all()
},
'terms': [
'month',
'houston_temp',
'boston_temp'
]
}
]
)
# 步骤 2: 创建 Chart 对象
cht = Chart(
datasource=weatherdata,
series_options=[
{
'options': {
'type': 'line',
'stacking': False
},
'terms': {
'month': [
'boston_temp',
'houston_temp'
]
}
}
],
chart_options={
'title': {
'text': '波士顿与休斯顿的天气数据'
},
'xAxis': {
'title': {
'text': '月份'
}
}
}
)
# 步骤 3: 将图表对象发送到模板。
return render_to_response({'weatherchart': cht})
在 Django 模板中,你可以使用 load_charts 过滤器渲染图表:
<head>
<!-- 引入 highcharts 和 jQuery 库的代码 -->
{% load chartit %}
{{ weatherchart|load_charts:"container" }}
</head>
<body>
<div id='container'>图表将在这里渲染</div>
</body>
4. 项目安装方式
请参考上文“安装指南”部分。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
731
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460