Scrapy爬虫框架最佳实践教程
2025-05-13 16:02:28作者:范垣楠Rhoda
1. 项目介绍
Scrapy 是一个强大的开源爬虫框架,它使用 Python 编写,用于快速构建高性能的爬虫程序。Scrapy 框架提供了许多内置的功能和组件,如请求调度、项目管道、下载器、中间件等,使得开发者可以更加专注于数据的抓取和解析。
本项目是基于 Scrapy 框架的一个开源项目示例,它展示了如何使用 Scrapy 来创建一个基本的爬虫,以抓取网页数据。
2. 项目快速启动
首先,确保你的系统中已经安装了 Python 和 pip。以下是快速启动本项目的方法:
# 克隆项目到本地
git clone https://github.com/gabrielfvale/scrappy.git
# 进入项目目录
cd scrappy
# 安装项目依赖
pip install -r requirements.txt
# 运行爬虫
scrapy crawl example
在运行上述命令后,Scrapy 会自动启动爬虫,并输出爬取的数据。
3. 应用案例和最佳实践
3.1 数据抓取
以下是一个简单的爬虫案例,展示了如何使用 Scrapy 抓取网页数据:
import scrapy
class ExampleSpider(scrapy.Spider):
name = 'example'
allowed_domains = ['example.com']
start_urls = ['http://example.com']
def parse(self, response):
# 解析网页并提取数据
title = response.css('title::text').get()
yield {'title': title}
3.2 数据存储
Scrapy 支持多种数据存储方式,如 JSON、CSV、数据库等。以下是将抓取的数据存储为 JSON 文件的示例:
# 在 settings.py 文件中添加以下代码
FEED_URI = 'output.json'
FEED_FORMAT = 'json'
FEED_EXPORTERS = {
'json': 'scrapy.exporters.JsonItemExporter',
}
3.3 中间件使用
Scrapy 的中间件允许你在请求和响应过程中插入自定义逻辑。以下是一个简单的中间件示例,用于打印请求和响应的信息:
class MyMiddleware:
def process_request(self, request, spider):
print(f'Sending request to {request.url}')
def process_response(self, response, request, spider):
print(f'Received response from {response.url}')
return response
在 settings.py 中启用中间件:
DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.MyMiddleware': 543,
}
4. 典型生态项目
Scrapy 生态中有许多典型的项目,它们可以帮助开发者更高效地进行数据抓取,以下是一些例子:
- Scrapy-Redis: 集成了 Redis 的 Scrapy 项目,可以实现分布式爬取。
- Scrapy-Selenium: 结合了 Selenium 的 Scrapy 项目,适用于动态网页的爬取。
- Scrapy-FIFA: 用于爬取足球数据的项目,展示了如何使用 Scrapy 进行复杂数据的抓取。
以上就是 Scrapy 爬虫框架的最佳实践教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
368
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882