Scrapy爬虫框架最佳实践教程
2025-05-13 15:01:45作者:范垣楠Rhoda
1. 项目介绍
Scrapy 是一个强大的开源爬虫框架,它使用 Python 编写,用于快速构建高性能的爬虫程序。Scrapy 框架提供了许多内置的功能和组件,如请求调度、项目管道、下载器、中间件等,使得开发者可以更加专注于数据的抓取和解析。
本项目是基于 Scrapy 框架的一个开源项目示例,它展示了如何使用 Scrapy 来创建一个基本的爬虫,以抓取网页数据。
2. 项目快速启动
首先,确保你的系统中已经安装了 Python 和 pip。以下是快速启动本项目的方法:
# 克隆项目到本地
git clone https://github.com/gabrielfvale/scrappy.git
# 进入项目目录
cd scrappy
# 安装项目依赖
pip install -r requirements.txt
# 运行爬虫
scrapy crawl example
在运行上述命令后,Scrapy 会自动启动爬虫,并输出爬取的数据。
3. 应用案例和最佳实践
3.1 数据抓取
以下是一个简单的爬虫案例,展示了如何使用 Scrapy 抓取网页数据:
import scrapy
class ExampleSpider(scrapy.Spider):
name = 'example'
allowed_domains = ['example.com']
start_urls = ['http://example.com']
def parse(self, response):
# 解析网页并提取数据
title = response.css('title::text').get()
yield {'title': title}
3.2 数据存储
Scrapy 支持多种数据存储方式,如 JSON、CSV、数据库等。以下是将抓取的数据存储为 JSON 文件的示例:
# 在 settings.py 文件中添加以下代码
FEED_URI = 'output.json'
FEED_FORMAT = 'json'
FEED_EXPORTERS = {
'json': 'scrapy.exporters.JsonItemExporter',
}
3.3 中间件使用
Scrapy 的中间件允许你在请求和响应过程中插入自定义逻辑。以下是一个简单的中间件示例,用于打印请求和响应的信息:
class MyMiddleware:
def process_request(self, request, spider):
print(f'Sending request to {request.url}')
def process_response(self, response, request, spider):
print(f'Received response from {response.url}')
return response
在 settings.py 中启用中间件:
DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.MyMiddleware': 543,
}
4. 典型生态项目
Scrapy 生态中有许多典型的项目,它们可以帮助开发者更高效地进行数据抓取,以下是一些例子:
- Scrapy-Redis: 集成了 Redis 的 Scrapy 项目,可以实现分布式爬取。
- Scrapy-Selenium: 结合了 Selenium 的 Scrapy 项目,适用于动态网页的爬取。
- Scrapy-FIFA: 用于爬取足球数据的项目,展示了如何使用 Scrapy 进行复杂数据的抓取。
以上就是 Scrapy 爬虫框架的最佳实践教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896