Triton推理服务器中YOLOv8n姿态模型负维度错误解决方案
2025-05-25 03:13:35作者:柏廷章Berta
问题背景
在使用Triton推理服务器部署YOLOv8n姿态估计模型(yolov8n-poses)时,开发者遇到了一个棘手的运行时错误。当尝试通过Ultralytics的YOLO类进行推理时,系统抛出"Trying to create tensor with negative dimension -941"的异常,导致姿态估计功能无法正常工作。
错误分析
该错误的核心在于模型后处理阶段尝试创建具有负维度的张量。具体来说,在非极大值抑制(NMS)操作中,系统试图创建一个形状为[0, -941]的张量,这显然是无效的。这种情况通常发生在模型输出与预期格式不匹配,或者关键模型参数未正确初始化时。
解决方案
经过深入排查,发现问题根源在于模型的关键参数未正确设置。YOLOv8姿态估计模型需要两个重要参数:
kpt_shape:定义关键点的形状,通常为[关键点数量, 坐标维度]names:类别名称字典
通过创建自定义的YOLO类,可以手动设置这些关键参数,从而解决负维度错误。以下是实现方案:
from ultralytics import YOLO
class CustomYOLO(YOLO):
def __init__(self, model="yolov8n.pt", task=None, verbose=False):
super().__init__(model, task, verbose)
if task == 'pose':
# 设置类别名称(姿态估计通常只有"person"一类)
var_names = {0: "person"}
# 初始化预测器
self.predictor = self._smart_load("predictor")(_callbacks=self.callbacks)
self.predictor.setup_model(model=self.model, verbose=False)
# 更新模型关键参数
self.predictor.model.__dict__.update({
"names": var_names,
"kpt_shape": [17, 3] # 17个关键点,每个点3个值(x,y,置信度)
})
使用示例
配置好自定义类后,可以像常规YOLO模型一样使用:
from custom_yolo import CustomYOLO as YOLO
# 连接到Triton服务器上的模型
model = YOLO(f"grpc://localhost:8001/yolov8n_pose", task="pose")
# 执行推理
results = model.predict(image_path)
# 保存带有关键点标注的结果
results[0].save(output_path)
技术要点
-
关键点形状(kpt_shape):YOLOv8姿态模型默认检测17个人体关键点(COCO数据集标准),每个关键点包含x坐标、y坐标和置信度三个值。
-
类别名称(names):虽然姿态估计通常只检测"person"一类,但模型仍需要这个参数来完成后处理流程。
-
Triton集成:解决方案不仅适用于本地模型,也适用于通过gRPC连接到Triton服务器上的模型实例。
总结
通过自定义YOLO类并正确设置关键参数,可以有效解决YOLOv8n姿态模型在Triton推理服务器上运行时出现的负维度错误。这种方法不仅解决了当前问题,也为在Triton上部署其他需要特殊参数设置的模型提供了参考思路。开发者可以根据实际需求调整关键点数量和类别名称,以适应不同的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92