JohnTheRipper 密码分析工具基准测试中的重复密码问题分析
问题背景
JohnTheRipper 是一款广受欢迎的开源密码分析工具,其基准测试功能(--test
)用于评估不同密码哈希算法的分析性能。然而,近期发现该工具的基准测试实现存在两个关键问题,可能导致测试结果不准确,无法真实反映实际分析场景中的性能表现。
问题一:单一测试向量下的虚假多盐值模拟
当测试数据中只包含一个测试向量时,基准测试代码会错误地尝试模拟多个盐值(salt)的情况。这导致以下问题:
- 相同的盐值被重复使用
- 相同的候选密码集合被反复测试
- 可能产生不真实的缓存命中率,使测试结果优于实际分析场景
技术影响:这种重复计算会导致测试结果偏向于展示最佳情况性能,而非实际分析中的平均性能。特别是在现代CPU的缓存机制下,重复计算相同数据会获得不合理的性能提升。
解决方案:当检测到只有一个测试向量时,应直接禁用多盐值模拟功能,确保测试条件与实际单盐值分析场景一致。
问题二:掩码模式下的候选密码生成缺陷
基准测试默认使用掩码模式(mask mode)生成候选密码,但当前实现存在以下问题:
- 每次调用掩码模式都会重新开始生成密码
- 导致相同的密码集合被反复生成和测试
- 对于支持掩码加速的哈希格式影响尤为严重
技术细节:掩码模式是JohnTheRipper中一种高效的密码生成方式,通过定义密码模式(如字符集和长度)来系统性地生成候选密码。但在基准测试中,不当的调用方式破坏了密码生成的连续性。
临时解决方案:仅在确实需要掩码功能时(如使用复杂掩码或多重掩码)才调用掩码模式,其他情况下回退到基准测试原有的密码生成逻辑。原有逻辑设计为连续生成不重复的候选密码,更符合实际分析场景。
更深入的性能考量
这两个问题共同导致基准测试可能高估实际分析性能,原因包括:
- 指令缓存优势:重复执行相同代码路径会提高指令缓存命中率
- 数据局部性优势:重复处理相同数据会提高数据缓存命中率
- 分支预测优势:重复相同执行路径会提高分支预测准确率
- 预取机制优势:可预测的内存访问模式有利于硬件预取
这些因素在实际分析中不会如此理想,因为真实的密码分析会处理更多样化的数据和执行路径。
修复方案与实现
针对这两个问题,项目已提交了修复代码:
- 对于单一测试向量情况,明确设置salts=0以禁用多盐值模拟
- 优化掩码模式的调用条件,减少不必要的重复密码生成
这些修复使基准测试更准确地反映JohnTheRipper在实际密码分析场景中的性能表现,为安全研究人员和系统管理员提供更可靠的性能数据。
总结
基准测试的准确性对密码安全评估至关重要。JohnTheRipper通过修复这些测试实现中的问题,确保了性能数据的真实性和可靠性,帮助用户更好地评估系统对密码分析测试的抵抗能力。这也提醒我们,在设计和实现性能测试时,必须仔细考虑测试条件与实际使用场景的一致性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









