Kubernetes Dashboard Helm Chart Ingress 服务端口配置问题解析
问题背景
在Kubernetes Dashboard项目的Helm Chart配置中,发现了一个关于Ingress服务端口配置的问题。当用户使用Helm Chart部署Dashboard时,HTTP Ingress规则错误地连接到了443端口(HTTPS默认端口),而不是预期的80端口(HTTP默认端口)。这种配置会导致Ingress控制器无法正确路由HTTP流量到后端服务。
技术细节分析
这个问题本质上是一个配置映射错误。在Kubernetes Ingress资源定义中,需要明确指定后端服务的端口号。在Dashboard的Helm Chart模板中,当app.ingress.hosts参数被设置为null时,模板错误地将HTTPS服务端口(443)而非HTTP服务端口(80)分配给了HTTP Ingress规则。
这种配置问题会导致以下现象:
- 当用户通过HTTP(80端口)访问Dashboard时,请求会被转发到后端服务的443端口
- 如果后端服务没有在443端口上监听HTTP流量,连接将会失败
- 即使后端服务在443端口上监听,也可能因为协议不匹配(HTTP请求发送到HTTPS端口)而导致连接问题
解决方案
项目维护团队已经通过代码提交修复了这个问题。修复的核心内容是确保在HTTP Ingress规则中正确引用后端服务的80端口,而不是443端口。这个修复已经被合并到主分支,并包含在7.10.4版本的发布中。
最佳实践建议
对于使用Kubernetes Dashboard Helm Chart的用户,建议:
-
始终使用最新稳定版本的Chart(7.10.4或更高版本)
-
在自定义Ingress配置时,明确检查后端服务端口的映射关系
-
部署后验证Ingress规则是否正确配置,可以使用以下命令检查:
kubectl get ingress <ingress-name> -o yaml确认spec.rules.http.paths.backend.service.port.number的值是否符合预期
-
对于生产环境,建议同时配置HTTP和HTTPS的Ingress规则,并正确设置相应的后端端口
总结
Kubernetes Dashboard作为Kubernetes集群的重要管理界面,其部署配置的正确性至关重要。这次发现的Ingress服务端口配置问题提醒我们,在使用Helm Chart部署应用时,需要仔细检查生成的Kubernetes资源定义,特别是网络相关的配置部分。项目团队快速响应并修复问题的态度也体现了开源社区的高效协作精神。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00