Self-LLM项目部署GLM-4-9B模型时的GPU内存优化实践
2025-05-15 11:17:51作者:殷蕙予
在Self-LLM项目中部署GLM-4-9B这类大语言模型时,GPU内存不足是一个常见的技术挑战。本文将通过一个实际案例,深入分析问题原因并提供解决方案,帮助开发者更好地管理GPU资源。
问题现象分析
当使用阿里云24GB显存的GPU实例部署GLM-4-9B模型时,系统报出GPU内存不足的错误。这种情况通常表现为以下几种形式:
- 模型加载过程中直接报显存不足错误
- 推理请求时出现显存溢出
- 服务运行一段时间后突然崩溃
根本原因探究
经过技术排查,发现导致该问题的核心因素包括:
-
模型规模与显存需求不匹配:GLM-4-9B作为90亿参数的大模型,其显存需求远超24GB,特别是在使用FP32精度时。
-
资源未正确释放:在Notebook环境中重复运行模型加载代码时,前一次运行的资源可能未被完全释放,导致显存碎片化。
-
推理批处理设置不当:默认的批处理大小可能过大,进一步增加了显存压力。
解决方案与实践
1. 显存资源管理最佳实践
对于24GB显存的GPU实例,建议采取以下优化措施:
-
使用混合精度:将模型转换为FP16或BF16格式,可显著减少显存占用。
-
启用梯度检查点:通过牺牲少量计算时间换取显存节省。
-
实现动态批处理:根据当前可用显存动态调整批处理大小。
2. 代码层面的优化
在Notebook环境中,务必注意:
# 在重新运行前确保释放资源
import torch
torch.cuda.empty_cache()
# 显式删除模型引用
del model
3. 模型量化方案
对于资源受限的环境,模型量化是最有效的解决方案:
- 8-bit量化:可将显存需求降低至原来的1/4
- 4-bit量化:进一步将显存需求降至1/8
- GPTQ量化:专为Transformer模型优化的后训练量化方法
经验总结
-
环境隔离:建议为每个模型实验创建独立的环境或内核,避免资源冲突。
-
监控工具:使用nvidia-smi等工具实时监控显存使用情况。
-
渐进式加载:对于超大模型,考虑实现参数的分片加载机制。
-
服务化部署:生产环境建议使用专门的模型服务框架,如FastAPI+uvicorn,而非Notebook环境。
通过以上优化措施,即使在资源受限的环境中,也能相对稳定地运行GLM-4-9B这类大模型。关键在于理解模型的内存需求特征,并采取针对性的优化策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355