GPTFast 使用指南
2024-08-15 12:16:26作者:卓艾滢Kingsley
项目介绍
GPTFast 是一个加速 Hugging Face Transformers 模型推理速度的工具,能够将性能提升 7.6-9 倍。该项目起初是针对 Llama-2-7b 模型由 PyTorch 团队开发的一套技术,后来发展成为一个通用的包,适用于所有的 Hugging Face 模型。它利用了原生的 PyTorch 环境,通过优化技术如 Medusa 和 Speculative Sampling,提供更高效的模型执行。
项目快速启动
要迅速开始使用 GPTFast,首先确保你的环境已配置好 Python 和 PyTorch。接下来,按照以下步骤操作:
环境准备
-
创建并激活虚拟环境(这里以 Linux/macOS 为例):
python3 -m venv VIRTUAL_ENV_NAME source VIRTUAL_ENV_NAME/bin/activate # windows 用户使用: `source VIRTUAL_ENV_NAME\Scripts\activate`
-
安装 GPTFast 包:
pip install gptfast
示例代码运行
接下来,在你的 Python 脚本中,你可以这样使用 GPTFast 来加速模型的推理:
import os
import torch
from transformers import AutoTokenizer
from GPTFast.Core import gpt_fast
from GPTFast.Helpers import timed
# 设置环境变量以禁用并行化减少冲突
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# 确定设备为 CUDA 或 CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
# 示例函数调用,实际应用中替换为自己的逻辑
def run_example():
tokenizer = AutoTokenizer.from_pretrained("model_name") # 替换为你的模型名称
model = gpt_fast.GPTFast.from_pretrained("model_name").to(device)
# 进行一次示例推理
input_text = "你好,世界!"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
with timed("Inference"):
output = model.generate(**inputs)
print(tokenizer.decode(output[0]))
run_example()
请注意,你需要将 "model_name"
替换成你要使用的具体 Hugging Face 模型的名称。
应用案例和最佳实践
GPTFast 的应用场景广泛,特别是在需要高性能推理服务的场景下,比如对话系统、文本生成、内容审核等。最佳实践中,应考虑模型预热、批处理策略以及适时利用 GPTFast 提供的优化技巧来进一步提高效率。
典型生态项目
- gpt-blazing: 类似 GPTFast,但扩展支持更多模型(例如 Baichuan2),提供了广泛模型的性能优化。
- gptfast: 实现 GPTFast 的核心优化到所有 HuggingFace 模型上,简化了跨模型的性能提升过程。
- gpt-accelera: 针对 SFT/RM/PPO 训练和批量推断进行了拓展,旨在最大化训练和推理的吞吐量,适合更复杂的机器学习工作流。
这些项目构成了 GPTFast 生态的重要组成部分,为不同需求的开发者提供了丰富的选择。
以上就是 GPTFast 的基本使用指南,通过遵循这些步骤,你可以开始在你的项目中享受更快的Transformer模型推理体验。记得查阅项目的官方文档和更新日志以获取最新信息和技巧。
登录后查看全文
热门项目推荐
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript043GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX01PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython08
热门内容推荐
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

React Native鸿蒙化仓库
C++
138
222

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
98
155

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
660
441

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
112
253

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
702
97

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
361
354

轻量级、语义化、对开发者友好的 golang 时间处理库
Go
8
2

端云一体化的微信小程序项目
JavaScript
120
0

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
515
43