mvfst 项目安装与使用教程
2024-09-26 14:07:44作者:齐添朝
1. 项目的目录结构及介绍
mvfst 是一个由 Facebook 实现的 IETF QUIC 协议的 C++ 客户端和服务器实现。以下是项目的主要目录结构及其功能介绍:
mvfst/
├── quic/
│ ├── api/ # 定义应用程序与 QUIC 传输层交互的 API
│ ├── client/ # 客户端传输实现
│ ├── codec/ # 协议的读写编解码实现
│ ├── common/ # 通用工具函数实现
│ ├── congestion_control/ # 不同的拥塞控制算法实现,如 Cubic 和 Copa
│ ├── flowcontrol/ # 流控制功能实现
│ ├── handshake/ # 加密握手层实现
│ ├── happyeyeballs/ # IPV4 和 IPV6 连接竞赛机制实现
│ ├── logging/ # 日志框架实现
│ ├── loss/ # 不同的丢包恢复算法实现
│ ├── samples/ # 示例客户端和服务器
│ ├── server/ # 服务器传输实现
│ └── state/ # 连接和流级别的状态对象和状态机实现
├── build/ # 构建相关文件
├── cmake/ # CMake 配置文件
├── docs/ # 文档文件
├── scripts/ # 脚本文件
└── tests/ # 测试文件
2. 项目的启动文件介绍
mvfst 项目中没有明确的“启动文件”,因为它是作为一个库来使用的。不过,项目中包含了一些示例客户端和服务器,可以用来演示如何使用 mvfst 库。
示例客户端和服务器
在 quic/samples/ 目录下,你可以找到示例客户端和服务器的实现。例如:
quic/samples/echo:这是一个简单的回显服务器和客户端示例。
启动示例
要启动示例服务器,可以使用以下命令:
./echo -mode=server -host=<host> -port=<port>
要启动示例客户端,可以使用以下命令:
./echo -mode=client -host=<host> -port=<port>
3. 项目的配置文件介绍
mvfst 项目本身没有特定的配置文件,因为它主要是作为一个库来使用的。不过,在构建和运行示例时,你可能需要配置一些环境变量或参数。
构建配置
在构建 mvfst 时,你可以使用 getdeps.py 脚本来管理依赖项和构建过程。以下是一个简单的构建命令示例:
# 克隆仓库
git clone https://github.com/facebook/mvfst.git
# 进入项目目录
cd mvfst
# 使用 getdeps.py 脚本构建项目
python3 ./build/fbcode_builder/getdeps.py build mvfst --install-prefix=$(pwd)/_build
运行配置
在运行示例客户端和服务器时,你可以通过命令行参数来配置它们的行为。例如:
./echo -mode=server -host=::1 -port=4433
这个命令将启动一个绑定到 ::1 地址和 4433 端口的回显服务器。
通过这些配置和示例,你可以开始使用 mvfst 项目来实现和测试 QUIC 协议的客户端和服务器。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873