ComfyUI中PyTorch权重加载失败问题的技术解析与解决方案
2025-04-29 10:11:22作者:咎岭娴Homer
问题背景
在ComfyUI项目中使用PyTorch 2.6及以上版本时,用户可能会遇到权重文件加载失败的问题,系统提示"Weights only load failed"。这个问题的根源在于PyTorch 2.6对模型安全性进行了重大改进,默认启用了weights_only=True的安全加载模式。
技术原理分析
PyTorch 2.6版本引入了一个重要的安全变更:torch.load()函数的weights_only参数默认值从False改为True。这一变更旨在防止潜在的不安全代码执行风险,因为传统的PyTorch模型序列化可能包含任意Python代码。
当weights_only=True时,PyTorch会严格限制可以反序列化的对象类型,只允许基本数据类型和特定的安全类。如果模型文件中包含自定义类(如ultralytics.nn.tasks.DetectionModel),系统会拒绝加载并抛出错误。
具体错误分析
错误信息中明确指出两个关键点:
- 检测到了不被允许的全局类
GLOBAL ultralytics.nn.tasks.DetectionModel - 提供了两种解决方案:要么关闭
weights_only安全检查,要么显式地将自定义类加入安全列表
解决方案
方案一:信任源并关闭安全检查(不推荐)
如果确认模型文件来源可信,可以显式设置weights_only=False:
torch.load(file_path, weights_only=False)
风险提示:这种方法会完全关闭安全检查,可能执行模型中的任意代码,仅应在完全信任模型来源时使用。
方案二:安全地添加自定义类到白名单(推荐)
PyTorch提供了两种方式将自定义类加入安全列表:
- 使用
add_safe_globals函数:
from torch.serialization import add_safe_globals
from ultralytics.nn.tasks import DetectionModel
add_safe_globals([DetectionModel])
model = torch.load(file_path, weights_only=True)
- 使用上下文管理器:
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel
with safe_globals([DetectionModel]):
model = torch.load(file_path, weights_only=True)
最佳实践建议
- 优先使用方案二:在保持安全检查的同时解决问题,安全性更高
- 验证模型来源:确保加载的模型文件来自可信源
- 考虑模型转换:将模型转换为更安全的格式(如ONNX)
- 版本兼容性检查:确认使用的PyTorch版本与模型训练版本兼容
- 错误处理:在代码中添加适当的异常处理,为用户提供友好的错误提示
总结
PyTorch 2.6的安全改进虽然带来了短暂的兼容性问题,但从长远看提升了深度学习应用的安全性。ComfyUI用户遇到此问题时,应理解其背后的安全考量,并根据自身安全需求选择合适的解决方案。对于生产环境,推荐采用方案二的安全加载方式,既解决了兼容性问题,又保持了必要的安全防护。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1