LEO:3D世界中的具身多模态通用代理
项目介绍
LEO(Large Embodied Omnivore)是一个在3D世界中的具身多模态通用代理。它能够进行视觉语言对齐、推理、聊天、规划和行动。LEO的设计灵感来源于现实世界中的智能体,通过两阶段的训练方案实现:3D视觉语言(VL)对齐和3D视觉语言动作(VLA)指令调优。
LEO的开发团队由来自北京大学、清华大学、中国科学技术大学等顶尖学府的专家组成,他们在人工智能和计算机视觉领域有着深厚的研究背景。该项目已成功入选ICML 2024,并获得了广泛的关注。
项目技术分析
LEO的核心技术在于其多模态数据处理能力和强大的推理能力。它通过以下几个关键技术实现:
-
3D视觉语言对齐:LEO能够理解和处理3D场景中的视觉信息,并将其与语言描述进行对齐。这一过程通过大量的数据训练实现,确保LEO能够在复杂的3D环境中准确识别和定位物体。
-
3D视觉语言动作指令调优:在完成视觉语言对齐后,LEO进一步通过指令调优,学习如何在3D环境中执行各种任务。这一阶段涉及大量的任务规划和动作执行数据,确保LEO能够在实际应用中高效完成任务。
-
多模态融合:LEO不仅能够处理视觉和语言信息,还能够将这些信息与动作指令进行融合,实现更加智能的决策和行动。
项目及技术应用场景
LEO的应用场景非常广泛,特别是在需要复杂环境理解和多模态交互的领域。以下是一些典型的应用场景:
-
智能家居:LEO可以作为智能家居系统的中枢,通过理解和执行用户的语音指令,控制家中的各种设备,如灯光、空调、安防系统等。
-
虚拟现实(VR)和增强现实(AR):在VR和AR应用中,LEO可以帮助用户在虚拟环境中进行导航、交互和任务执行,提升用户体验。
-
机器人导航与操作:LEO可以应用于机器人领域,帮助机器人在复杂的3D环境中进行导航和物体操作,如仓库管理、家庭服务机器人等。
-
教育与培训:LEO可以用于教育和培训领域,通过虚拟环境中的互动,帮助学生更好地理解和掌握复杂的概念和技能。
项目特点
LEO具有以下几个显著特点,使其在众多具身代理项目中脱颖而出:
-
多模态通用性:LEO不仅能够处理视觉和语言信息,还能够将这些信息与动作指令进行融合,实现更加智能的决策和行动。
-
强大的数据支持:LEO的训练数据涵盖了大量的3D场景和任务,确保其在各种复杂环境中都能表现出色。
-
模块化设计:LEO的设计采用了模块化架构,方便开发者根据具体需求进行定制和扩展。
-
开源社区支持:LEO是一个开源项目,拥有活跃的开发者社区,用户可以轻松获取项目代码、数据和模型权重,并参与到项目的开发和改进中。
结语
LEO作为一个在3D世界中的具身多模态通用代理,具有广泛的应用前景和强大的技术支持。无论是在智能家居、虚拟现实、机器人导航还是教育培训领域,LEO都能为用户提供高效、智能的解决方案。如果你正在寻找一个能够处理复杂3D环境的多模态代理,LEO无疑是一个值得尝试的选择。
立即访问LEO项目页面,了解更多信息并开始你的LEO之旅吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









