Ash框架中运行时加载与预加载的优先级问题解析
2025-07-08 02:10:21作者:傅爽业Veleda
背景介绍
在Elixir生态系统中,Ash框架作为一个强大的资源定义和管理工具,提供了灵活的数据加载机制。其中prepare build(load: ...)和Ash.load/2是两种常见的加载方式,分别用于编译时预定义加载和运行时动态加载。本文将深入分析这两种加载方式的交互行为及其优先级问题。
问题现象
在Ash框架使用过程中,开发者可能会遇到以下场景:
- 在资源定义中使用
prepare预定义计算字段的加载 - 在运行时通过
Ash.load/2动态加载相同字段但传入不同参数
# 资源定义
defmodule Post do
preparations do
prepare build(load: [:sum])
end
calculations do
calculate :sum, :integer do
argument :a, :integer, default: 1
argument :b, :integer, default: 2
calculation expr(^arg(:a) + ^arg(:b))
end
end
end
# 运行时调用
post = Ash.load!(post, sum: [a: 3, b: 4])
按照直觉,开发者可能期望运行时传入的参数会覆盖预定义的默认参数,但实际行为可能不符合预期。
技术原理
Ash框架的加载机制遵循以下核心原则:
- 编译时预加载:通过
prepare build(load: ...)定义的加载会在资源创建时执行 - 运行时加载:
Ash.load/2提供了按需加载的能力 - 优先级规则:运行时加载应优先于编译时预加载
这种设计确保了开发者可以在运行时灵活覆盖预定义的加载行为,提供了更大的灵活性。
解决方案
框架维护者通过以下方式解决了这个问题:
- 合并策略:使用
Keyword.merge/2将运行时加载合并到编译时加载中 - 参数覆盖:确保运行时提供的参数能够正确覆盖预定义的默认参数
- 行为一致性:保持
Ash.load/2与Ash.Query.load行为的一致性
最佳实践
基于此问题的分析,建议开发者:
- 合理使用预加载:对于计算量小、频繁使用的字段适合使用预加载
- 明确加载意图:在性能敏感场景明确指定需要加载的字段
- 避免全局关系加载:特别要避免在全局prepare中加载大型关系数据
- 参数验证:对于计算字段,确保参数传递符合预期
性能考量
开发者需要注意:
- N+1问题:不当的全局加载可能导致性能问题
- 加载粒度:细粒度的加载控制有助于优化性能
- 计算复杂度:简单计算适合预加载,复杂计算应考虑延迟加载
总结
Ash框架通过合理的加载优先级设计,既保持了使用灵活性,又确保了行为可预测性。开发者理解这一机制后,可以更高效地利用框架特性,构建性能优异的应用。记住框架设计哲学:"提供任何可能性,但不强制任何特定方式",这有助于我们在使用框架时做出更明智的设计决策。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355