Requests库SSL证书验证问题分析与解决方案
2025-04-30 00:56:08作者:秋泉律Samson
问题背景
Requests是Python中最流行的HTTP客户端库之一,在2.32.0版本中引入了一项关于SSLContext的重要改进。该版本开始重用全局SSLContext,旨在提高首次请求和后续请求之间的时间一致性,并优化Windows系统上使用OpenSSL 3.x构建的Python版本的证书加载时间。
然而,这项改进也带来了一个兼容性问题:当开发者尝试访问由本地根CA(证书颁发机构)签名的网站时,虽然证书链已正确安装在Windows工作站上,但Requests 2.32.x版本会抛出SSLCertVerificationError错误,提示"unable to get local issuer certificate"。
技术分析
在Requests 2.31.1及更早版本中,开发者可以通过自定义HTTPAdapter来加载系统默认证书,代码如下:
from requests.adapters import HTTPAdapter
import requests
from requests.packages.urllib3.util.ssl_ import create_urllib3_context
class SSLContextAdapter(HTTPAdapter):
def init_poolmanager(self, *args, **kwargs):
context = create_urllib3_context()
context.load_default_certs() # 加载系统CA证书
kwargs['ssl_context'] = context
return super().init_poolmanager(*args, **kwargs)
但在2.32.0及更高版本中,这种实现方式不再有效,因为Requests内部改用了全局SSLContext(_preloaded_ssl_context)来提高性能。虽然直接访问这个私有变量可以解决问题,但这并不是推荐的做法。
解决方案
Requests核心开发者提供了更优雅的解决方案,通过重写HTTPAdapter的初始化方法和连接池构建方法来实现:
class SSLContextAdapter(HTTPAdapter):
def __init__(
self,
pool_connections=DEFAULT_POOLSIZE,
pool_maxsize=DEFAULT_POOLSIZE,
max_retries=DEFAULT_RETRIES,
pool_block=DEFAULT_POOLBLOCK,
):
super().__init__()
self.custom_context = create_urllib3_context()
self.custom_context.load_default_certs()
def build_connection_pool_key_attributes(self, request, verify, cert=None):
host_params, pool_kwargs = super().build_connection_pool_key_attributes(request, verify, cert)
pool_kwargs['ssl_context'] = self.custom_context
return host_params, pool_kwargs
这种实现方式有以下几个优点:
- 在初始化阶段就创建并配置SSLContext,避免每次请求都重复创建
- 通过正规API而非私有变量实现功能
- 保持了Requests 2.32.x的性能优化特性
- 可以根据需要添加更多证书验证逻辑
最佳实践建议
对于企业内网开发环境,建议:
- 确保证书链完整安装到系统信任存储中
- 考虑使用上述自定义适配器方案
- 对于生产环境,建议使用专业CA颁发的证书而非自签名证书
- 定期更新Requests库以获取最新的安全修复
对于库开发者,应当注意:
- 避免直接依赖库内部实现细节
- 关注库的更新日志和破坏性变更
- 测试时覆盖不同版本的环境
总结
Requests 2.32.0的SSLContext优化虽然带来了性能提升,但也改变了证书验证的工作方式。通过理解这些底层变化并采用推荐的适配器模式,开发者可以既享受新版本带来的性能优势,又能保持与企业内部CA证书的兼容性。这种解决方案不仅适用于当前问题,也为未来可能的SSL/TLS相关变更提供了灵活的扩展点。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
23
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K
仓颉编译器源码及 cjdb 调试工具。
C++
112
78
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
532
117
仓颉编程语言运行时与标准库。
Cangjie
122
93
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588
Ascend Extension for PyTorch
Python
75
105
仓颉编程语言测试用例。
Cangjie
34
61
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401