PINTO_model_zoo中BodyPix模型在MacOS上的运行问题与解决方案
背景介绍
BodyPix是一个基于深度学习的实时人体分割模型,能够识别图像中的人体部位并进行分割。在PINTO_model_zoo项目中,提供了BodyPix模型的ONNX格式实现,方便开发者在不同平台上部署使用。
问题现象
在MacOS系统上运行BodyPix模型时,会出现"Dilation not supported for AutoPadType::SAME_UPPER or AutoPadType::SAME_LOWER"的错误提示。这个问题主要出现在使用CPU执行提供程序时,而在使用DirectML或CUDA等GPU加速的执行提供程序时则不会出现。
问题分析
该问题源于ONNX Runtime在CPU模式下对某些卷积操作的自动填充类型支持不完善。具体来说,当卷积操作同时使用了扩张(dilation)和SAME_UPPER/SAME_LOWER自动填充时,ONNX Runtime的CPU实现会抛出错误。
解决方案
1. 使用不同的执行提供程序
最直接的解决方案是使用支持该操作的执行提供程序:
- 在支持CUDA的NVIDIA GPU上使用CUDA提供程序
- 在Windows系统上使用DirectML提供程序
- 使用TensorRT提供程序
2. 使用OpenVINO作为替代运行时
对于需要在CPU上运行的情况,可以考虑使用OpenVINO作为替代运行时。OpenVINO对这类操作有更好的支持,虽然性能可能不如GPU加速方案,但能够保证功能正常。
3. 模型优化方案
从模型优化的角度,可以考虑以下改进:
- 将模型中的阈值参数从固定值改为可输入参数,提高灵活性
- 优化后处理流程,特别是关于关键点提取和掩码生成的逻辑
- 改进仿射变换和尺寸调整的顺序,确保输出与原始图像对齐
实现细节
关键点提取优化
在原始实现中,关键点提取可能会出现重复值。可以通过以下代码优化:
unique_first_values, unique_indices = np.unique(keypoints_classidscorexy[:, 0], return_index=True)
keypoints_classidscorexy = keypoints_classidscorexy[unique_indices]
掩码生成优化
对于掩码生成中的边缘重叠问题,可能需要对以下部分进行优化:
- 最后的Resize(Bilinear)操作
- Sigmoid激活函数
- 掩码生成中的阈值处理逻辑
性能与精度权衡
在模型优化过程中,需要在性能和精度之间做出权衡。原始Google实现和参考实现中的后处理大多采用程序化处理,无法充分利用GPU加速。而当前的ONNX实现将部分计算嵌入模型中,虽然可能带来微小的精度损失,但能显著提高运行效率。
总结
BodyPix模型在MacOS等平台上的运行问题主要源于特定执行提供程序对某些操作的支持不足。通过选择合适的执行提供程序或使用替代运行时如OpenVINO,可以解决这些问题。同时,通过对模型后处理流程的优化,可以进一步提高模型的实用性和准确性。
对于开发者而言,理解这些技术细节有助于在不同平台上更好地部署和使用BodyPix模型,实现高效的人体部位分割功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00