NuScenes-devkit 中传感器坐标系转换的技术解析
2025-07-01 16:15:51作者:魏献源Searcher
传感器坐标系转换的基本原理
在自动驾驶系统中,多传感器融合是关键技术之一。NuScenes数据集提供了丰富的传感器数据,包括摄像头、雷达和激光雷达等。理解这些传感器之间的坐标系转换关系对于数据处理至关重要。
NuScenes中的坐标系转换主要涉及两个层次:
- 传感器坐标系到车辆坐标系(ego frame)的转换
- 车辆坐标系到全局坐标系(global frame)的转换
传感器到车辆坐标系的转换
每个传感器都有自己的校准参数,存储在calibrated_sensor
表中。这些参数包括:
- 传感器相对于车辆坐标系的平移量(translation)
- 传感器相对于车辆坐标系的旋转量(rotation)
可以通过以下代码获取传感器到车辆坐标系的转换矩阵:
ref_cs_rec = nusc.get('calibrated_sensor', ref_sd_rec['calibrated_sensor_token'])
sensor_from_vehicle = transform_matrix(
ref_cs_rec['translation'],
Quaternion(ref_cs_rec['rotation']),
inverse=False
)
车辆到全局坐标系的转换
车辆的位姿信息存储在ego_pose
表中,包含:
- 车辆在全局坐标系中的位置(translation)
- 车辆在全局坐标系中的朝向(rotation)
获取车辆到全局坐标系的转换矩阵:
ref_pose_rec = nusc.get('ego_pose', ref_sd_rec['ego_pose_token'])
global_from_vehicle = transform_matrix(
ref_pose_rec['translation'],
Quaternion(ref_pose_rec['rotation']),
inverse=False
)
传感器之间的直接转换
虽然可以通过全局坐标系中转来实现传感器间的转换,但更高效的方式是直接计算传感器间的转换关系。例如,从雷达坐标系到摄像头坐标系的转换:
# 雷达到车辆的转换
car_from_radar = transform_matrix(
rad_sensor['translation'],
Quaternion(rad_sensor['rotation']),
inverse=False
)
# 车辆到摄像头的转换
cam_from_car = transform_matrix(
cam_sensor['translation'],
Quaternion(cam_sensor['rotation']),
inverse=True
)
# 雷达到摄像头的直接转换
cam_from_radar = reduce(np.dot, [cam_from_car, car_from_radar])
需要注意的是,这种传感器间的直接转换在同一场景中是恒定的,因为传感器在车辆上的安装位置是固定的。但在不同场景间可能不同,因为NuScenes数据采集使用了不同的车辆配置。
实际应用中的注意事项
- 时间同步问题:不同传感器的采样时间可能不完全一致,需要考虑时间对齐
- 坐标系定义:NuScenes使用右手坐标系,x向前,y向左,z向上
- 转换顺序:矩阵乘法顺序很重要,必须确保正确的级联顺序
- 逆矩阵使用:根据转换方向决定是否需要计算逆矩阵
通过正确理解和使用这些转换关系,开发者可以有效地将不同传感器的数据对齐到统一的坐标系中,为后续的感知和融合算法提供准确的数据基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~053CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0350- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
307
337

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58