NuScenes-devkit 中传感器坐标系转换的技术解析
2025-07-01 10:19:17作者:魏献源Searcher
传感器坐标系转换的基本原理
在自动驾驶系统中,多传感器融合是关键技术之一。NuScenes数据集提供了丰富的传感器数据,包括摄像头、雷达和激光雷达等。理解这些传感器之间的坐标系转换关系对于数据处理至关重要。
NuScenes中的坐标系转换主要涉及两个层次:
- 传感器坐标系到车辆坐标系(ego frame)的转换
- 车辆坐标系到全局坐标系(global frame)的转换
传感器到车辆坐标系的转换
每个传感器都有自己的校准参数,存储在calibrated_sensor表中。这些参数包括:
- 传感器相对于车辆坐标系的平移量(translation)
- 传感器相对于车辆坐标系的旋转量(rotation)
可以通过以下代码获取传感器到车辆坐标系的转换矩阵:
ref_cs_rec = nusc.get('calibrated_sensor', ref_sd_rec['calibrated_sensor_token'])
sensor_from_vehicle = transform_matrix(
ref_cs_rec['translation'],
Quaternion(ref_cs_rec['rotation']),
inverse=False
)
车辆到全局坐标系的转换
车辆的位姿信息存储在ego_pose表中,包含:
- 车辆在全局坐标系中的位置(translation)
- 车辆在全局坐标系中的朝向(rotation)
获取车辆到全局坐标系的转换矩阵:
ref_pose_rec = nusc.get('ego_pose', ref_sd_rec['ego_pose_token'])
global_from_vehicle = transform_matrix(
ref_pose_rec['translation'],
Quaternion(ref_pose_rec['rotation']),
inverse=False
)
传感器之间的直接转换
虽然可以通过全局坐标系中转来实现传感器间的转换,但更高效的方式是直接计算传感器间的转换关系。例如,从雷达坐标系到摄像头坐标系的转换:
# 雷达到车辆的转换
car_from_radar = transform_matrix(
rad_sensor['translation'],
Quaternion(rad_sensor['rotation']),
inverse=False
)
# 车辆到摄像头的转换
cam_from_car = transform_matrix(
cam_sensor['translation'],
Quaternion(cam_sensor['rotation']),
inverse=True
)
# 雷达到摄像头的直接转换
cam_from_radar = reduce(np.dot, [cam_from_car, car_from_radar])
需要注意的是,这种传感器间的直接转换在同一场景中是恒定的,因为传感器在车辆上的安装位置是固定的。但在不同场景间可能不同,因为NuScenes数据采集使用了不同的车辆配置。
实际应用中的注意事项
- 时间同步问题:不同传感器的采样时间可能不完全一致,需要考虑时间对齐
- 坐标系定义:NuScenes使用右手坐标系,x向前,y向左,z向上
- 转换顺序:矩阵乘法顺序很重要,必须确保正确的级联顺序
- 逆矩阵使用:根据转换方向决定是否需要计算逆矩阵
通过正确理解和使用这些转换关系,开发者可以有效地将不同传感器的数据对齐到统一的坐标系中,为后续的感知和融合算法提供准确的数据基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K