Modelscope/SWIFT项目中的多卡训练保存检查点问题解析
问题现象
在使用Modelscope/SWIFT项目进行多卡训练时,当尝试保存模型检查点到指定目录时,系统报出"Directory not empty"错误。具体表现为在transformers 4.49.0.dev0版本下,使用4卡训练qwen2.5-vl-3B模型时,保存检查点过程中出现OSError: [Errno 39]错误。
错误分析
该错误发生在模型训练过程中保存检查点的环节,系统试图将一个临时检查点目录重命名为正式检查点目录时,发现目标目录非空。这种问题在多卡分布式训练场景下尤为常见,主要原因包括:
-
多进程竞争条件:在多卡训练环境下,多个进程可能同时尝试操作同一目录,导致文件系统状态不一致。
-
文件系统同步延迟:分布式系统中,各节点对文件系统的视图可能存在短暂不一致。
-
检查点保存机制:transformers库在保存检查点时采用的临时目录重命名策略在某些环境下不够健壮。
解决方案
针对这一问题,有以下几种可行的解决方案:
-
添加--save_only_model参数: 在训练命令中添加此参数可以简化保存过程,只保存模型本身而非完整检查点,避免复杂的目录操作。
-
升级transformers版本: 该问题在较新版本的transformers中可能已经修复,建议尝试升级到稳定版本。
-
修改保存策略: 可以自定义检查点保存逻辑,采用更稳健的文件操作方式,如先确保目录完全删除再创建。
-
增加重试机制: 在保存检查点的代码中增加错误处理和重试逻辑,应对短暂的目录状态不一致。
最佳实践建议
对于使用Modelscope/SWIFT进行多卡训练的用户,建议:
-
在训练命令中始终包含--save_only_model参数,除非确实需要完整检查点。
-
定期关注transformers库的更新,及时升级到稳定版本。
-
在分布式训练环境中,确保所有节点对共享存储有相同的访问权限和视图。
-
对于关键训练任务,实现自定义的检查点保存回调,增加错误处理和日志记录。
通过以上措施,可以有效避免在多卡训练过程中遇到的检查点保存问题,确保训练过程的稳定性和可靠性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00