Modelscope/SWIFT项目中的多卡训练保存检查点问题解析
问题现象
在使用Modelscope/SWIFT项目进行多卡训练时,当尝试保存模型检查点到指定目录时,系统报出"Directory not empty"错误。具体表现为在transformers 4.49.0.dev0版本下,使用4卡训练qwen2.5-vl-3B模型时,保存检查点过程中出现OSError: [Errno 39]错误。
错误分析
该错误发生在模型训练过程中保存检查点的环节,系统试图将一个临时检查点目录重命名为正式检查点目录时,发现目标目录非空。这种问题在多卡分布式训练场景下尤为常见,主要原因包括:
-
多进程竞争条件:在多卡训练环境下,多个进程可能同时尝试操作同一目录,导致文件系统状态不一致。
-
文件系统同步延迟:分布式系统中,各节点对文件系统的视图可能存在短暂不一致。
-
检查点保存机制:transformers库在保存检查点时采用的临时目录重命名策略在某些环境下不够健壮。
解决方案
针对这一问题,有以下几种可行的解决方案:
-
添加--save_only_model参数: 在训练命令中添加此参数可以简化保存过程,只保存模型本身而非完整检查点,避免复杂的目录操作。
-
升级transformers版本: 该问题在较新版本的transformers中可能已经修复,建议尝试升级到稳定版本。
-
修改保存策略: 可以自定义检查点保存逻辑,采用更稳健的文件操作方式,如先确保目录完全删除再创建。
-
增加重试机制: 在保存检查点的代码中增加错误处理和重试逻辑,应对短暂的目录状态不一致。
最佳实践建议
对于使用Modelscope/SWIFT进行多卡训练的用户,建议:
-
在训练命令中始终包含--save_only_model参数,除非确实需要完整检查点。
-
定期关注transformers库的更新,及时升级到稳定版本。
-
在分布式训练环境中,确保所有节点对共享存储有相同的访问权限和视图。
-
对于关键训练任务,实现自定义的检查点保存回调,增加错误处理和日志记录。
通过以上措施,可以有效避免在多卡训练过程中遇到的检查点保存问题,确保训练过程的稳定性和可靠性。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









