AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.6版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架及其依赖项,使开发者和数据科学家能够快速部署深度学习工作负载。这些容器镜像针对AWS基础设施进行了性能优化,支持CPU和GPU加速,并提供了不同版本的框架组合以满足各种应用场景需求。
近日,AWS Deep Learning Containers项目发布了针对ARM64架构的PyTorch推理镜像v1.6版本,主要包含两个重要镜像更新:
PyTorch 2.6.0 CPU版本镜像
该镜像基于Ubuntu 22.04操作系统,预装了Python 3.12环境和PyTorch 2.6.0 CPU版本。镜像中包含了完整的PyTorch生态系统工具链,如TorchServe模型服务框架和Torch Model Archiver模型打包工具,方便用户直接部署训练好的模型。
关键组件版本信息:
- PyTorch: 2.6.0(CPU优化版本)
- TorchVision: 0.21.0
- TorchAudio: 2.6.0
- Python: 3.12
- NumPy: 2.2.3
- OpenCV: 4.11.0
镜像中还预装了常用的数据处理和科学计算库,如SciPy、Pandas等,以及AWS CLI工具,便于与AWS云服务交互。这些组件都经过ARM64架构的专门优化,能够在基于AWS Graviton处理器的EC2实例上发挥最佳性能。
PyTorch 2.6.0 GPU版本镜像
针对需要GPU加速的场景,AWS同时发布了支持CUDA 12.4的PyTorch GPU版本镜像。该镜像同样基于Ubuntu 22.04和Python 3.12,但额外包含了完整的CUDA工具链和cuDNN库,支持在配备NVIDIA GPU的ARM64实例上运行。
关键特性:
- CUDA版本: 12.4
- cuDNN版本: 9(针对CUDA 12优化)
- 包含完整的PyTorch GPU支持(torch==2.6.0+cu124)
- 预装CUDA命令行工具和cuBLAS数学库
这个GPU版本镜像特别适合需要高性能推理的计算机视觉、自然语言处理等深度学习应用场景。通过CUDA加速,可以显著提升模型推理速度,降低延迟。
技术亮点与优化
这两个新发布的镜像在多个方面进行了优化:
-
ARM64架构优化:专门为AWS Graviton处理器设计,充分利用ARM架构的特性,相比传统x86架构在某些工作负载上可提供更好的性价比。
-
Python 3.12支持:采用最新的Python 3.12版本,带来性能提升和新语言特性支持。
-
完整的工具链:不仅包含PyTorch框架本身,还预装了模型服务、监控、日志等生产环境所需的工具。
-
安全加固:基于Ubuntu 22.04 LTS,包含最新的安全补丁和系统更新。
-
云原生集成:内置AWS CLI和Boto3等工具,便于与AWS其他服务(如S3、CloudWatch等)集成。
对于需要在ARM架构上部署PyTorch模型的用户,这些预构建的容器镜像可以大大简化环境配置过程,提高部署效率,同时确保性能和稳定性。用户可以直接从AWS ECR仓库拉取这些镜像,快速开始模型服务部署工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00