Async-profiler 性能优化:降低 Wall Clock 采样模式的开销
在 Java 性能分析领域,async-profiler 是一个广受欢迎的低开销分析工具。其 wall clock 采样模式(通过 -e wall 参数启用)能够捕获所有线程的执行状态,包括阻塞和等待中的线程。然而,当应用线程数量庞大时,这种模式的性能开销会变得显著。
问题背景
传统的 wall clock 采样实现方式是通过一个专用线程定期向所有应用线程发送信号进行采样。假设一个应用有 1000 个线程,采样间隔设置为 100ms,那么每秒将产生 10,000 次采样,这意味着:
- 每秒发送 10,000 个信号
- 每秒写入约 150KB 的 JFR 数据
- 频繁唤醒处于休眠状态的线程
这种实现方式存在几个明显问题:
- 信号处理本身是昂贵的操作
- 大量休眠线程被不必要地唤醒
- 生成的 JFR 文件体积过大
- CPU 资源浪费严重
优化方案
针对上述问题,async-profiler 引入了一种智能采样优化机制:
-
空闲线程检测:采样时会检查线程状态和 CPU 使用情况。如果发现线程处于空闲状态(CPU 使用率未变化),则跳过后续采样。
-
采样批处理:引入新的
profiler.WallClockSampleJFR 事件,包含一个计数器字段记录跳过的采样次数。这样可以将数百个相同的采样记录压缩为一个事件。 -
恢复机制:当检测到线程 CPU 使用率发生变化或达到最大跳过次数(1000次)时,恢复对该线程的采样。
-
兼容性选项:通过
nobatch参数可以禁用优化,保持原有行为。
技术实现细节
优化后的采样流程如下:
- 首次采样线程时记录其 CPU 使用量
- 后续采样时比较当前 CPU 使用量
- 如果无变化,增加跳过计数器
- 当变化发生或计数器达到阈值时,生成批处理事件
- 对于活动线程,保持原有采样频率
新的 WallClockSample 事件扩展了标准的 jdk.ExecutionSample 事件,新增了 samples 字段记录跳过的采样次数。JFR 读取器会透明地处理这些事件,对用户而言采样结果与优化前完全一致。
实际效益
这项优化带来了多方面的改进:
- 性能提升:显著减少了信号发送次数和线程唤醒操作
- 资源节约:降低了 CPU 使用率和内存占用
- 存储优化:大幅减小了 JFR 记录文件大小
- 灵活性增强:使得更小的采样间隔(如 10ms)变得可行
对于拥有大量线程(特别是线程池)的应用,这项优化可以带来数量级的性能改进,使得 wall clock 采样模式在生产环境中的实用性大大提高。
适用场景
这项优化特别适合以下场景:
- 微服务架构中的高并发应用
- 使用大型线程池的服务
- 需要长时间持续分析的生产环境
- 对性能开销敏感的关键业务系统
通过智能地跳过空闲线程的采样,async-profiler 在保持分析精度的同时,显著降低了性能开销,为 Java 性能分析提供了更加高效的解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00