Async-profiler 性能优化:降低 Wall Clock 采样模式的开销
在 Java 性能分析领域,async-profiler 是一个广受欢迎的低开销分析工具。其 wall clock 采样模式(通过 -e wall
参数启用)能够捕获所有线程的执行状态,包括阻塞和等待中的线程。然而,当应用线程数量庞大时,这种模式的性能开销会变得显著。
问题背景
传统的 wall clock 采样实现方式是通过一个专用线程定期向所有应用线程发送信号进行采样。假设一个应用有 1000 个线程,采样间隔设置为 100ms,那么每秒将产生 10,000 次采样,这意味着:
- 每秒发送 10,000 个信号
- 每秒写入约 150KB 的 JFR 数据
- 频繁唤醒处于休眠状态的线程
这种实现方式存在几个明显问题:
- 信号处理本身是昂贵的操作
- 大量休眠线程被不必要地唤醒
- 生成的 JFR 文件体积过大
- CPU 资源浪费严重
优化方案
针对上述问题,async-profiler 引入了一种智能采样优化机制:
-
空闲线程检测:采样时会检查线程状态和 CPU 使用情况。如果发现线程处于空闲状态(CPU 使用率未变化),则跳过后续采样。
-
采样批处理:引入新的
profiler.WallClockSample
JFR 事件,包含一个计数器字段记录跳过的采样次数。这样可以将数百个相同的采样记录压缩为一个事件。 -
恢复机制:当检测到线程 CPU 使用率发生变化或达到最大跳过次数(1000次)时,恢复对该线程的采样。
-
兼容性选项:通过
nobatch
参数可以禁用优化,保持原有行为。
技术实现细节
优化后的采样流程如下:
- 首次采样线程时记录其 CPU 使用量
- 后续采样时比较当前 CPU 使用量
- 如果无变化,增加跳过计数器
- 当变化发生或计数器达到阈值时,生成批处理事件
- 对于活动线程,保持原有采样频率
新的 WallClockSample
事件扩展了标准的 jdk.ExecutionSample
事件,新增了 samples
字段记录跳过的采样次数。JFR 读取器会透明地处理这些事件,对用户而言采样结果与优化前完全一致。
实际效益
这项优化带来了多方面的改进:
- 性能提升:显著减少了信号发送次数和线程唤醒操作
- 资源节约:降低了 CPU 使用率和内存占用
- 存储优化:大幅减小了 JFR 记录文件大小
- 灵活性增强:使得更小的采样间隔(如 10ms)变得可行
对于拥有大量线程(特别是线程池)的应用,这项优化可以带来数量级的性能改进,使得 wall clock 采样模式在生产环境中的实用性大大提高。
适用场景
这项优化特别适合以下场景:
- 微服务架构中的高并发应用
- 使用大型线程池的服务
- 需要长时间持续分析的生产环境
- 对性能开销敏感的关键业务系统
通过智能地跳过空闲线程的采样,async-profiler 在保持分析精度的同时,显著降低了性能开销,为 Java 性能分析提供了更加高效的解决方案。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









