RIFE项目微调学习率设置指南
2025-06-11 10:30:40作者:尤辰城Agatha
深度学习模型微调中的学习率选择
在深度学习领域,模型微调是一个常见且重要的技术手段。当我们使用预训练模型进行迁移学习或继续训练时,学习率的设置尤为关键。以RIFE项目为例,该项目是一个基于arXiv2020论文实现的视频帧插值模型,在微调预训练模型时需要特别注意学习率的选择策略。
预训练模型微调的特点
使用预训练模型进行微调时,模型参数已经具备了一定的特征提取能力。此时如果学习率设置过大,可能会破坏已有的良好特征表示;而学习率过小则会导致训练效率低下,难以达到理想的微调效果。
RIFE项目的学习率建议
根据RIFE项目作者的经验建议,在微调4.18版本预训练模型时,可以采用以下学习率策略:
-
预热阶段(warmup):初始阶段使用较低的学习率,让模型逐步适应新的数据分布。
-
稳定阶段:预热结束后,建议将学习率维持在1e-5(0.00001)的水平。这个数值是经过实践验证的相对合理的微调学习率,能够在保持模型已有能力的基础上进行有效调整。
学习率选择的实践考量
在实际应用中,学习率的选择还需要考虑以下因素:
- 数据集规模:数据量较大时可适当提高学习率
- 任务相似度:新任务与原任务差异较大时可考虑更高学习率
- 模型架构:不同层次的参数可能需要不同的学习率
- 硬件条件:batch size大小会影响学习率的选择
学习率调整策略
除了固定学习率外,还可以考虑以下策略:
- 学习率衰减:随着训练进行逐步降低学习率
- 分层学习率:对不同网络层使用不同学习率
- 周期性学习率:在训练过程中周期性变化学习率
总结
在RIFE项目中使用预训练模型进行微调时,1e-5的学习率是一个经过验证的可靠起点。实际应用中可根据具体情况进行适当调整,并通过验证集表现来确定最优值。记住,微调阶段的学习率通常应小于初始训练时的学习率,这是迁移学习中的一个重要原则。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息012Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
155
1.99 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

Ascend Extension for PyTorch
Python
38
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
517
49

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K