TorchTitan项目中InterleavedZeroBubble调度器的性能问题分析
2025-06-19 07:56:23作者:舒璇辛Bertina
背景介绍
在TorchTitan深度学习框架中,研究人员发现InterleavedZeroBubble调度器在512-GPU规模实验中表现出异常的性能特征。与传统的1F1B和Interleaved1F1B调度器相比,InterleavedZeroBubble调度器显示出显著更高的内存占用(94.45%)和极低的吞吐量(TPS仅为13),同时模型利用率(MFU)也降至3.41%的低水平。
问题现象
通过基准测试数据对比可以清晰地看到性能差异:
- 1F1B调度器:内存使用82.46GiB(86.80%),TPS为100,MFU达到26.52%
- Interleaved1F1B调度器:内存使用72.69GiB(76.52%),TPS提升至128,MFU为33.88%
- InterleavedZeroBubble调度器:内存使用高达89.73GiB(94.45%),TPS骤降至13,MFU仅为3.41%
值得注意的是,在测试Zero Bubble调度器时,由于兼容性问题,未使用torch.compile、异步TP和Float8等优化技术。
深入调查
进一步研究发现,问题的表现与激活检查点(Activation Checkpointing, AC)技术的使用密切相关:
在不使用AC的情况下:
- Interleaved1F1B:TPS 304,MFU 4.16%
- InterleavedZeroBubble:TPS 339,MFU 4.65% - 表现反而更好
但在启用完整AC后:
- Interleaved1F1B:TPS降至243,MFU 3.33%
- InterleavedZeroBubble:TPS暴跌至100,MFU仅1.37%
根本原因
经过深入分析,发现问题根源在于PyTorch框架内部的一个实现细节。当使用InterleavedZeroBubble调度器配合激活检查点时,会触发特定的执行模式,导致计算图被分割成大量微小片段,进而引发以下问题:
- 调度开销显著增加
- 内存管理效率下降
- 计算资源利用率降低
解决方案
开发团队提出了一个有效的修复方案,通过调整计算图的构建方式,避免了上述问题的发生。测试结果显示该方案成功恢复了InterleavedZeroBubble调度器的预期性能:
在不使用AC的情况下:
- Interleaved1F1B:TPS 206,MFU 3.02%
- InterleavedZeroBubble:TPS提升至227,MFU 3.33%
在使用完整AC的情况下:
- Interleaved1F1B:TPS 177,MFU 2.59%
- InterleavedZeroBubble:TPS 192,MFU 2.82% - 性能差距显著缩小
技术启示
这一问题的解决过程为深度学习系统优化提供了宝贵经验:
- 调度算法性能可能高度依赖于底层框架实现细节
- 高级优化技术(如AC)与特定调度策略的组合需要谨慎评估
- 性能问题的根本原因可能隐藏较深,需要系统性的排查方法
- 针对特定工作负载的微调往往能带来显著的性能提升
该问题的成功解决不仅修复了InterleavedZeroBubble调度器的性能缺陷,也为TorchTitan框架的稳定性与可靠性做出了重要贡献。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
654
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言测试用例。
Cangjie
37
857