TorchTitan项目中InterleavedZeroBubble调度器的性能问题分析
2025-06-19 18:30:15作者:舒璇辛Bertina
背景介绍
在TorchTitan深度学习框架中,研究人员发现InterleavedZeroBubble调度器在512-GPU规模实验中表现出异常的性能特征。与传统的1F1B和Interleaved1F1B调度器相比,InterleavedZeroBubble调度器显示出显著更高的内存占用(94.45%)和极低的吞吐量(TPS仅为13),同时模型利用率(MFU)也降至3.41%的低水平。
问题现象
通过基准测试数据对比可以清晰地看到性能差异:
- 1F1B调度器:内存使用82.46GiB(86.80%),TPS为100,MFU达到26.52%
- Interleaved1F1B调度器:内存使用72.69GiB(76.52%),TPS提升至128,MFU为33.88%
- InterleavedZeroBubble调度器:内存使用高达89.73GiB(94.45%),TPS骤降至13,MFU仅为3.41%
值得注意的是,在测试Zero Bubble调度器时,由于兼容性问题,未使用torch.compile、异步TP和Float8等优化技术。
深入调查
进一步研究发现,问题的表现与激活检查点(Activation Checkpointing, AC)技术的使用密切相关:
在不使用AC的情况下:
- Interleaved1F1B:TPS 304,MFU 4.16%
- InterleavedZeroBubble:TPS 339,MFU 4.65% - 表现反而更好
但在启用完整AC后:
- Interleaved1F1B:TPS降至243,MFU 3.33%
- InterleavedZeroBubble:TPS暴跌至100,MFU仅1.37%
根本原因
经过深入分析,发现问题根源在于PyTorch框架内部的一个实现细节。当使用InterleavedZeroBubble调度器配合激活检查点时,会触发特定的执行模式,导致计算图被分割成大量微小片段,进而引发以下问题:
- 调度开销显著增加
- 内存管理效率下降
- 计算资源利用率降低
解决方案
开发团队提出了一个有效的修复方案,通过调整计算图的构建方式,避免了上述问题的发生。测试结果显示该方案成功恢复了InterleavedZeroBubble调度器的预期性能:
在不使用AC的情况下:
- Interleaved1F1B:TPS 206,MFU 3.02%
- InterleavedZeroBubble:TPS提升至227,MFU 3.33%
在使用完整AC的情况下:
- Interleaved1F1B:TPS 177,MFU 2.59%
- InterleavedZeroBubble:TPS 192,MFU 2.82% - 性能差距显著缩小
技术启示
这一问题的解决过程为深度学习系统优化提供了宝贵经验:
- 调度算法性能可能高度依赖于底层框架实现细节
- 高级优化技术(如AC)与特定调度策略的组合需要谨慎评估
- 性能问题的根本原因可能隐藏较深,需要系统性的排查方法
- 针对特定工作负载的微调往往能带来显著的性能提升
该问题的成功解决不仅修复了InterleavedZeroBubble调度器的性能缺陷,也为TorchTitan框架的稳定性与可靠性做出了重要贡献。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1