async-profiler中nativemem未捕获所有内存分配的问题分析
问题背景
在Rust应用程序的性能分析过程中,开发者发现async-profiler的nativemem功能未能捕获所有的内存分配调用。与jemalloc/jeprof工具相比,async-profiler的结果中缺失了部分调用栈信息。这些缺失的调用栈包括通过__GI___libc_malloc和_int_malloc等底层分配函数的路径。
技术分析
经过深入调查,发现async-profiler在内存分配拦截机制上存在两个关键问题:
-
特定分配函数未被拦截:async-profiler原本没有拦截像
posix_memalign这样的特殊内存分配函数。这些函数在Rust的标准库中被广泛使用,特别是在处理对齐内存分配时。 -
函数入口点修补不完整:当函数引用同时存在于
.rela.plt和.rela.dyn节区时,async-profiler只修补了其中一个节区的引用,导致部分调用路径未被正确捕获。
解决方案
开发团队针对这两个问题进行了修复:
-
扩展了拦截范围,现在能够正确捕获
posix_memalign等特殊分配函数。 -
改进了函数入口点修补机制,确保无论函数引用出现在哪个节区都能被正确拦截。
实际影响
这个问题特别影响Rust应用程序的分析,因为Rust的内存分配器会使用多种底层分配策略。修复后,async-profiler能够提供更完整的内存分配分析结果,与jemalloc等工具的结果更加一致。
技术细节
在Linux系统中,内存分配通常通过以下路径进行:
- 应用程序调用标准库分配函数
- 这些函数最终调用底层的内存管理实现
- 性能分析工具通过拦截这些调用点来收集数据
async-profiler通过动态修补这些调用点来实现无侵入式的分析。之前的实现遗漏了一些特殊情况,现在已得到完善。
结论
这个修复使得async-profiler在内存分配分析方面更加可靠,特别是对于使用Rust等现代语言开发的应用程序。开发者现在可以更有信心地使用async-profiler来进行全面的内存性能分析。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00