async-profiler中nativemem未捕获所有内存分配的问题分析
问题背景
在Rust应用程序的性能分析过程中,开发者发现async-profiler的nativemem功能未能捕获所有的内存分配调用。与jemalloc/jeprof工具相比,async-profiler的结果中缺失了部分调用栈信息。这些缺失的调用栈包括通过__GI___libc_malloc
和_int_malloc
等底层分配函数的路径。
技术分析
经过深入调查,发现async-profiler在内存分配拦截机制上存在两个关键问题:
-
特定分配函数未被拦截:async-profiler原本没有拦截像
posix_memalign
这样的特殊内存分配函数。这些函数在Rust的标准库中被广泛使用,特别是在处理对齐内存分配时。 -
函数入口点修补不完整:当函数引用同时存在于
.rela.plt
和.rela.dyn
节区时,async-profiler只修补了其中一个节区的引用,导致部分调用路径未被正确捕获。
解决方案
开发团队针对这两个问题进行了修复:
-
扩展了拦截范围,现在能够正确捕获
posix_memalign
等特殊分配函数。 -
改进了函数入口点修补机制,确保无论函数引用出现在哪个节区都能被正确拦截。
实际影响
这个问题特别影响Rust应用程序的分析,因为Rust的内存分配器会使用多种底层分配策略。修复后,async-profiler能够提供更完整的内存分配分析结果,与jemalloc等工具的结果更加一致。
技术细节
在Linux系统中,内存分配通常通过以下路径进行:
- 应用程序调用标准库分配函数
- 这些函数最终调用底层的内存管理实现
- 性能分析工具通过拦截这些调用点来收集数据
async-profiler通过动态修补这些调用点来实现无侵入式的分析。之前的实现遗漏了一些特殊情况,现在已得到完善。
结论
这个修复使得async-profiler在内存分配分析方面更加可靠,特别是对于使用Rust等现代语言开发的应用程序。开发者现在可以更有信心地使用async-profiler来进行全面的内存性能分析。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









