使用KWOK模拟Kubernetes资源使用情况的最佳实践
2025-06-28 04:25:27作者:毕习沙Eudora
KWOK项目为Kubernetes开发者提供了一个轻量级的测试环境,能够模拟真实集群中的各种行为。其中,资源使用情况的模拟是一个重要功能,可以帮助开发者在没有真实负载的情况下测试监控、调度等系统功能。
资源使用模拟的基本原理
KWOK通过两种主要方式实现资源使用模拟:
- 基础资源分配:通过metrics-resource组件为节点和Pod分配基础资源指标
- 动态使用量模拟:通过usage-from-annotation组件读取Pod注解中的使用量配置
这种设计既保证了基本的资源可见性,又提供了灵活的动态调整能力。
快速开始
要启用资源使用模拟功能,可以使用以下命令创建测试集群:
kwokctl create cluster \
--enable-metrics-server \
-c ./kustomize/metrics/resource/metrics-resource.yaml \
-c ./kustomize/metrics/usage/usage-from-annotation.yaml
这个命令会启动一个包含Metrics Server和资源模拟组件的KWOK集群。
配置资源使用
1. 扩展集群规模
首先,我们可以扩展集群中的节点和Pod数量:
# 创建2个节点
kwokctl scale node --replicas 2
# 创建5个Pod
kwokctl scale pod --replicas 5
2. 查看资源使用情况
使用标准的kubectl命令查看资源使用情况:
kubectl top pod
kubectl top node
初始状态下,这些资源使用量都是零值或默认值。
3. 动态调整Pod资源使用量
通过给Pod添加注解,可以动态调整其资源使用量:
kubectl patch pod pod-000000 --type=json -p='[{"op": "add", "path": "/metadata/annotations", "value": {
"kwok.x-k8s.io/usage-cpu": "100m",
"kwok.x-k8s.io/usage-memory": "100Mi"
}}]'
支持的注解包括:
kwok.x-k8s.io/usage-cpu:CPU使用量(单位:m)kwok.x-k8s.io/usage-memory:内存使用量(单位:Mi或Gi)
高级使用场景
模拟资源波动
通过定时更新注解值,可以模拟Pod资源使用的波动:
# 模拟CPU使用率从低到高波动
for i in {1..5}; do
kubectl annotate pod pod-000000 kwok.x-k8s.io/usage-cpu=${i}00m --overwrite
sleep 10
done
批量设置资源使用
可以使用标签选择器批量设置Pod资源使用:
kubectl get pods -l app=nginx -o name | xargs -I {} kubectl annotate {} \
kwok.x-k8s.io/usage-cpu=500m \
kwok.x-k8s.io/usage-memory=512Mi
实现原理深度解析
KWOK的资源模拟功能通过两个核心组件实现:
-
metrics-resource:提供基础的资源容量和分配量指标
- 为节点设置CPU和内存总量
- 为Pod设置请求(Requests)和限制(Limits)
-
usage-from-annotation:动态读取Pod注解中的使用量
- 定期扫描Pod注解
- 将注解值转换为Metrics Server可识别的格式
- 支持热更新,修改后立即生效
这种架构设计使得资源模拟既简单又灵活,既满足了基本测试需求,又能模拟复杂的动态场景。
最佳实践建议
- 测试前规划:明确要测试的场景,预先设计好资源使用模式
- 渐进式调整:从简单场景开始,逐步增加复杂度
- 结合监控:配合Prometheus等监控工具,全面观察系统行为
- 清理环境:测试完成后及时清理注解,避免影响后续测试
通过KWOK的资源模拟功能,开发者可以在轻量级环境中全面测试Kubernetes的资源管理能力,大大提高了开发和测试效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178