MidScene v0.14.3 版本发布:Android 屏幕尺寸处理优化与安全增强
MidScene 是一个专注于移动端场景化测试的开源项目,它通过构建真实用户操作场景来帮助开发者进行自动化测试和性能评估。该项目特别注重在 Android 平台上的表现,提供了丰富的功能来支持各种用户交互场景。
核心改进
Android 屏幕尺寸处理优化
本次版本在 Android 平台上实现了自定义方法来获取屏幕尺寸,并对尺寸处理逻辑进行了简化。这一改进主要解决了以下问题:
-
更精确的屏幕尺寸获取:通过实现自定义方法,避免了系统原生 API 在某些设备上可能返回不准确尺寸的问题。
-
简化处理逻辑:重构了尺寸处理流程,减少了不必要的计算和转换步骤,提高了性能。
-
更好的兼容性:新的实现方式能够更好地适应不同分辨率和屏幕密度的 Android 设备。
对于开发者而言,这意味着在使用 MidScene 进行 Android 测试时,能够获得更准确的屏幕尺寸信息,从而确保测试场景的精确构建。
YAML 配置支持非标准 HTTPS
在测试环境中,经常会遇到使用自签名证书或非标准 HTTPS 的情况。v0.14.3 版本在 YAML 配置中增加了对非标准 HTTPS 连接的支持,这一特性特别适合以下场景:
-
本地开发测试:当测试环境使用自签名证书时,不再需要手动绕过证书验证。
-
内部测试环境:在企业内部测试环境中,可以更方便地配置 HTTPS 端点。
-
快速原型验证:在快速验证阶段,可以暂时忽略证书安全问题,专注于功能测试。
需要注意的是,这一特性应谨慎在生产环境中使用,仅推荐在受控的测试环境中启用。
其他改进
Android 模式验证增强
在 AndroidAgent 构造函数中增加了对 VL-Model 模式的验证,这一改进确保了:
-
更早的错误检测:在初始化阶段就能发现配置问题,而不是在运行时才暴露。
-
更清晰的错误提示:当模式配置不正确时,会给出明确的错误信息,便于开发者快速定位问题。
文档完善
本次更新还包含了针对 Android 平台使用的文档补充,涵盖了:
-
基础配置指南:如何设置和运行 Android 测试场景。
-
最佳实践:针对不同测试场景的推荐配置。
-
常见问题解答:解决开发者在使用过程中可能遇到的典型问题。
技术价值
MidScene v0.14.3 的这些改进体现了项目团队对测试工具可靠性和易用性的持续追求。特别是 Android 屏幕尺寸处理的优化,直接提升了测试结果的准确性,这对于依赖精确屏幕操作的测试场景尤为重要。同时,对非标准 HTTPS 的支持则反映了项目对实际测试需求的深入理解,解决了开发者在测试过程中经常遇到的实际问题。
这些改进使得 MidScene 在移动端自动化测试领域又向前迈进了一步,为开发者提供了更强大、更灵活的工具来构建高质量的移动应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00