Argo Rollouts多集群Job执行方案设计与实现
2025-06-27 02:26:10作者:姚月梅Lane
背景与需求分析
在Kubernetes渐进式交付场景中,Argo Rollouts的Analysis功能经常需要执行Job来获取指标数据。当前架构中,AnalysisRun和Job默认运行在同一集群,这在实际生产环境中可能面临以下挑战:
- 中心化管理需求:希望AnalysisTemplate/Run在管理集群统一维护,而Job在业务集群执行
- 安全隔离要求:需要将Job运行在特定命名空间,应用不同的网络策略和调度约束
- 资源隔离考虑:Job可能消耗大量计算资源,需要与控制平面分离
技术方案设计
核心架构变更
通过在Rollouts控制器引入JOB_KUBECONFIG环境变量,实现Job执行集群的可配置化:
- 默认行为保留:未配置时保持现有逻辑,Job与AnalysisRun同集群
- 多集群支持:配置后使用指定kubeconfig创建跨集群Job
- 命名空间隔离:支持Job在目标集群的不同命名空间创建
关键技术实现
// 伪代码展示核心修改逻辑
func getJobClient() (client.Client, error) {
if os.Getenv("JOB_KUBECONFIG") != "" {
// 使用远程集群配置
cfg, err := clientcmd.BuildConfigFromFlags("", os.Getenv("JOB_KUBECONFIG"))
return client.New(cfg, client.Options{})
}
// 默认使用in-cluster配置
return defaultClient, nil
}
安全考量
- 凭证管理:支持ServiceAccount的in-cluster认证方式
- 权限控制:远程集群只需授予Job相关RBAC权限
- 网络隔离:通过命名空间级NetworkPolicy实现流量控制
典型应用场景
中心化管理模式
管理集群部署Rollouts控制器和AnalysisTemplate,业务集群运行实际工作负载:
- 避免业务集群安装CRD
- 统一管理分析策略模板
- 降低业务集群权限需求
安全增强部署
将指标收集Job运行在专用命名空间:
- 应用严格的PodSecurityPolicy
- 限制网络出口流量
- 使用专用节点池资源
方案优势与限制
核心价值
- 架构灵活性:解耦控制平面与数据平面
- 安全增强:实现工作负载级隔离
- 资源优化:计算密集型Job不影响控制面稳定性
已知约束
- 单远程集群限制:当前设计不支持动态多目标集群
- 监控复杂性:需要跨集群日志收集方案
- 网络延迟:跨集群通信可能增加分析延迟
实施建议
对于考虑采用此方案的用户,建议:
- 评估网络连通性:确保控制集群到Job集群的网络可达
- 设计权限模型:遵循最小权限原则配置RBAC
- 监控方案适配:部署跨集群日志/指标收集系统
- 性能测试:验证跨集群通信对分析延迟的影响
该增强功能已在Argo Rollouts最新版本中提供,用户可通过环境变量配置实现更灵活的Job部署策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178