Linkerd项目edge-25.3.4版本发布:多集群功能增强与IPv6支持恢复
Linkerd是一个轻量级的服务网格解决方案,它通过透明的代理机制为Kubernetes集群中的微服务提供可靠性和安全性保障。作为云原生计算基金会(CNCF)毕业项目,Linkerd以其简单易用和低资源消耗著称,特别适合需要零信任安全模型和可观测性的现代云原生应用。
本次发布的edge-25.3.4版本是Linkerd的一个边缘版本(edge release),主要聚焦于多集群功能的改进和IPv6支持的恢复。边缘版本通常包含新功能和改进,但尚未达到稳定版本的标准,适合希望在早期体验新功能的用户。
核心变更与功能增强
多集群功能全面升级
本次版本在多集群管理方面进行了多项重要改进。新引入的linkerd multicluster link-gen命令取代了原有的link和unlink命令,提供了更直观的多集群链接管理方式。这个新命令不仅简化了操作流程,还提供了更丰富的配置选项,使得跨集群服务发现和通信更加灵活可控。
针对服务镜像控制器(service mirror controller),本次更新修复了可能导致服务资源过时的bug,确保在多集群环境下服务信息的同步更加及时准确。同时,新增了对标签和注解的排除支持,用户现在可以精确控制哪些元数据会被同步到目标集群,这在需要过滤敏感信息或减少不必要数据传输的场景下特别有用。
IPv6支持恢复与网络改进
edge-25.3.4版本恢复了完整的IPv6支持,解决了之前版本中可能存在的兼容性问题。对于运行在纯IPv6环境或双栈网络中的Kubernetes集群,这一改进至关重要。
在网络性能方面,本次更新优化了代理的DNS查询行为,缓解了"惊群效应"(thundering herd effect)问题。当大量代理同时发起DNS查询时,原先的设计可能导致DNS服务器过载。新版本通过更智能的查询调度机制,显著降低了这种风险,提升了系统的整体稳定性。
外部工作负载支持增强
对于使用ExternalWorkloads的场景,本次更新提供了更好的兼容性。即使工作负载清单中没有显式声明Linkerd代理端口(默认4143),系统现在也能正确处理这些工作负载,简化了混合环境(既有Kubernetes内又有Kubernetes外工作负载)中的服务网格部署。
可观测性改进
在指标收集方面,新版本支持通过配置proxy.metrics.hostnameLabels选项,在出站指标中包含主机名标签。这一功能为网络流量分析提供了更丰富的上下文信息,使得运维人员能够更精确地追踪服务间的通信模式。
linkerd viz tap命令也得到了改进,移除了对过时的authority伪资源的依赖,使流量监控更加准确可靠。这一变更保持了与最新Kubernetes API标准的兼容性,同时简化了内部实现。
升级注意事项
本次版本引入了一个重要的变更:Linkerd现在要求集群中必须预先安装Gateway API CRDs。对于从旧版本升级的用户,系统会自动处理这一依赖;但对于全新安装,用户需要手动安装这些CRDs或通过Helm设置installGatewayAPI=true参数。
需要注意的是,当前版本的CLI存在一个已知问题:无法自动安装Gateway API CRDs。因此,对于使用CLI工具进行安装的用户,建议考虑使用后续的edge-25.4.1版本,该版本修复了这一问题。
总结
Linkerd edge-25.3.4版本在多集群管理、网络协议支持和可观测性等方面带来了多项实质性改进。特别是对IPv6的完整支持恢复和对多集群功能的增强,使得Linkerd在复杂网络环境下的表现更加出色。虽然作为边缘版本存在一些限制,但这些改进为即将到来的稳定版本奠定了坚实基础。
对于已经在生产环境中使用Linkerd多集群功能的用户,本次更新提供的服务镜像稳定性和元数据过滤能力将显著提升跨集群管理的效率和安全性。而新增的主机名标签支持则为网络性能分析和故障排查提供了更强大的工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00