使用图卷积神经网络实现精确组合优化
2024-06-07 05:40:32作者:胡易黎Nicole
在探索人工智能和机器学习的新边界中,我们很高兴向您推荐一个创新的开源项目——Exact Combinatorial Optimization with Graph Convolutional Neural Networks (GCNN)
。这个项目由Maxime Gasse等人在NeurIPS 2019会议上发表,并提供了官方代码实现。它利用图卷积神经网络来解决精确的组合优化问题,这是一种前沿的技术,将深度学习引入了传统优化领域。
项目介绍
该项目的主要目标是通过GCNN模型对常见的组合优化问题进行求解,如集合覆盖问题、组合拍卖问题、有容量限制的设施定位问题以及最大独立集问题。其核心思想是通过构建问题的图表示,并运用图卷积来学习节点间的交互信息,进而指导决策过程。
技术分析
项目采用的是Graph Convolutional Neural Networks(GCNN),这是一种用于处理非欧几里得数据结构的深度学习模型。GCNN能够捕捉图结构中的局部和全局信息,从而为复杂优化问题提供有效的解决方案。项目的代码结构清晰,提供了实例生成、样本生成、训练、测试和评估的一系列脚本,方便研究者快速上手实验。
应用场景
GCNN在解决实际应用中的组合优化问题上具有广泛的应用潜力。例如:
- 在物流规划中,GCNN可以帮助确定最优配送中心的位置以最小化运输成本。
- 在资源分配问题中,如广告投放或云服务调度,GCNN可以寻找最大化收益的策略。
- 在社交网络分析中,GCNN可用来寻找最大独立集,帮助理解社区结构。
项目特点
- 灵活性:项目支持多种组合优化问题,且易于扩展到其他类型的问题。
- 效率:利用GCNN进行端到端的学习,可以快速找到接近最优的解。
- 对比性:项目不仅实现了GCNN方法,还比较了几种经典的竞争对手算法,如ExtraTrees、SVMRank和LambdaMART。
- 可重复性:详尽的实验设置和结果评估确保了研究的可重复性和透明度。
要尝试这个项目,只需按照README中的安装和实验步骤进行操作即可。无论是研究人员还是开发者,都能从中受益,体验深度学习带来的组合优化新可能。对于对这个问题感兴趣的人来说,这无疑是一个不容错过的资源。
引用该项目时,请参考以下文献:
@inproceedings{conf/nips/GasseCFCL19,
title={Exact Combinatorial Optimization with Graph Convolutional Neural Networks},
author={Gasse, Maxime and Chételat, Didier and Ferroni, Nicola and Charlin, Laurent and Lodi, Andrea},
booktitle={Advances in Neural Information Processing Systems 32},
year={2019}
}
快加入到探索图卷积神经网络在组合优化中的无限可能吧!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
248

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0