使用图卷积神经网络实现精确组合优化
2024-06-07 05:40:32作者:胡易黎Nicole
在探索人工智能和机器学习的新边界中,我们很高兴向您推荐一个创新的开源项目——Exact Combinatorial Optimization with Graph Convolutional Neural Networks (GCNN)。这个项目由Maxime Gasse等人在NeurIPS 2019会议上发表,并提供了官方代码实现。它利用图卷积神经网络来解决精确的组合优化问题,这是一种前沿的技术,将深度学习引入了传统优化领域。
项目介绍
该项目的主要目标是通过GCNN模型对常见的组合优化问题进行求解,如集合覆盖问题、组合拍卖问题、有容量限制的设施定位问题以及最大独立集问题。其核心思想是通过构建问题的图表示,并运用图卷积来学习节点间的交互信息,进而指导决策过程。
技术分析
项目采用的是Graph Convolutional Neural Networks(GCNN),这是一种用于处理非欧几里得数据结构的深度学习模型。GCNN能够捕捉图结构中的局部和全局信息,从而为复杂优化问题提供有效的解决方案。项目的代码结构清晰,提供了实例生成、样本生成、训练、测试和评估的一系列脚本,方便研究者快速上手实验。
应用场景
GCNN在解决实际应用中的组合优化问题上具有广泛的应用潜力。例如:
- 在物流规划中,GCNN可以帮助确定最优配送中心的位置以最小化运输成本。
- 在资源分配问题中,如广告投放或云服务调度,GCNN可以寻找最大化收益的策略。
- 在社交网络分析中,GCNN可用来寻找最大独立集,帮助理解社区结构。
项目特点
- 灵活性:项目支持多种组合优化问题,且易于扩展到其他类型的问题。
- 效率:利用GCNN进行端到端的学习,可以快速找到接近最优的解。
- 对比性:项目不仅实现了GCNN方法,还比较了几种经典的竞争对手算法,如ExtraTrees、SVMRank和LambdaMART。
- 可重复性:详尽的实验设置和结果评估确保了研究的可重复性和透明度。
要尝试这个项目,只需按照README中的安装和实验步骤进行操作即可。无论是研究人员还是开发者,都能从中受益,体验深度学习带来的组合优化新可能。对于对这个问题感兴趣的人来说,这无疑是一个不容错过的资源。
引用该项目时,请参考以下文献:
@inproceedings{conf/nips/GasseCFCL19,
title={Exact Combinatorial Optimization with Graph Convolutional Neural Networks},
author={Gasse, Maxime and Chételat, Didier and Ferroni, Nicola and Charlin, Laurent and Lodi, Andrea},
booktitle={Advances in Neural Information Processing Systems 32},
year={2019}
}
快加入到探索图卷积神经网络在组合优化中的无限可能吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110