Apache uimaFIT 项目教程
2024-08-07 21:25:05作者:戚魁泉Nursing
1. 项目的目录结构及介绍
Apache uimaFIT 项目的目录结构遵循标准的 Maven 项目结构。以下是主要目录及其功能的介绍:
- src/main/java: 包含项目的所有 Java 源代码文件。
- src/main/resources: 包含项目的资源文件,如配置文件、模板文件等。
- src/test/java: 包含项目的所有测试代码文件。
- src/test/resources: 包含测试所需的资源文件。
- pom.xml: Maven 项目的配置文件,定义了项目的依赖、构建配置等。
2. 项目的启动文件介绍
在 Apache uimaFIT 项目中,没有特定的“启动文件”,因为它是作为库使用的。然而,如果你要创建一个新的 UIMA 分析引擎,你可以在 src/main/java 目录下创建一个新的 Java 类,并使用 uimaFIT 提供的工厂方法来实例化分析引擎。
例如:
import org.apache.uima.analysis_engine.AnalysisEngine;
import org.apache.uima.fit.factory.AnalysisEngineFactory;
public class MyAnalysisEngine {
public static void main(String[] args) throws Exception {
AnalysisEngine ae = AnalysisEngineFactory.createEngine(MyAEImpl.class);
// 其他代码
}
}
3. 项目的配置文件介绍
Apache uimaFIT 项目的配置文件主要包括 pom.xml 和 src/main/resources 目录下的配置文件。
pom.xml
pom.xml 是 Maven 项目的核心配置文件,定义了项目的依赖、构建配置等。以下是一个简单的示例:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.apache.uima</groupId>
<artifactId>uimafit-core</artifactId>
<version>3.3.0</version>
<dependencies>
<!-- 其他依赖 -->
</dependencies>
</project>
src/main/resources
在 src/main/resources 目录下,你可以放置项目的配置文件,如 UIMA 的 XML 描述符文件。这些文件用于定义 UIMA 组件的配置和行为。
例如,一个简单的 UIMA 描述符文件 MyAE.xml 可能如下:
<analysisEngineDescription xmlns="http://uima.apache.org/resourceSpecifier">
<frameworkImplementation>org.apache.uima.java</frameworkImplementation>
<primitive>true</primitive>
<annotatorImplementationName>MyAEImpl</annotatorImplementationName>
<analysisEngineMetaData>
<name>MyAE</name>
<description>My Analysis Engine</description>
<version>1.0</version>
<vendor>My Company</vendor>
</analysisEngineMetaData>
</analysisEngineDescription>
以上是 Apache uimaFIT 项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对你有所帮助!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
312
2.73 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
244
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
Ascend Extension for PyTorch
Python
151
178
暂无简介
Dart
605
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
236
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.01 K
React Native鸿蒙化仓库
JavaScript
237
310