Redis 技术文档
本文档旨在帮助用户安装、使用和深入了解 Redis 项目。以下是项目的安装指南、使用说明以及 API 使用文档。
1. 安装指南
Redis 客户端的安装路径遵循特定模式:clients/{language}/github.com/{owner}/{repository}.json
。其中 {language}
部分为语言的全名,映射在 languages.json
文件中。
例如,Python 客户端的安装路径为 clients/python/github.com/redis/redis-py.json
:
{
"name": "redis-py",
"description": "成熟且受支持。目前 Python 的首选方式。",
"recommended": true
}
2. 项目的使用说明
项目的使用说明主要涉及 Redis 命令的描述。命令描述存储在 commands.json
文件中,该文件是从 Redis 存储库中的命令文件夹自动生成的。
每个命令都有一个 Markdown 文件,其中包含完整的、易于理解的描述。在处理 Markdown 时,需要注意以下几点:
-
文本中,所有命令应以大写形式书写,并在反引号之间。
-
例如:
INCR
。 -
可以使用一些魔法关键字来命名 Redis 中的常见元素。
-
例如:
@multi-bulk-reply
。这些关键字将自动扩展并链接到文档的相关部分。
每个命令将有一个描述,以及 RESP2 和 RESP3 返回值。
关于返回值,这些包含在以下文件中:
resp2_replies.json
resp3_replies.json
每个文件是一个字典,其中包含一组匹配的键。每个键是一个字符串数组,当处理时,生成 Markdown 内容。以下是一个示例:
{
...
"ACL CAT": [
"以下之一:",
"* [数组回复](/docs/reference/protocol-spec#arrays):一个包含 [大字符串回复](/docs/reference/protocol-spec#bulk-strings) 元素的数组,表示 ACL 类别或类别中的命令。",
"* [简单错误回复](/docs/reference/protocol-spec#simple-errors):如果给出无效的类别名称,命令返回错误。"
],
...
}
重要提示:添加或编辑返回值时,请确保同时编辑这两个文件。
3. 项目 API 使用文档
Redis 命令的 API 使用文档主要涉及命令的描述和返回值。每个命令的描述和返回值都在相应的 Markdown 文件中详细说明。
- 使用大写字母书写命令名称,并在反引号之间。
- 使用魔法关键字来命名常见的 Redis 元素。
以下是一些示例回复类型:
@simple-string-reply
: 简单字符串回复@simple-error-reply
: 简单错误回复@integer-reply
: 整数回复@bulk-string-reply
: 大字符串回复@array-reply
: 数组回复@nil-reply
: 空回复@null-reply
: 空值回复@boolean-reply
: 布尔回复@double-reply
: 双精度回复@big-number-reply
: 大数回复@bulk-error-reply
: 大错误回复@verbatim-string-reply
: 逐字字符串回复@map-reply
: 映射回复@set-reply
: 集合回复@push-reply
: 推送回复
4. 项目安装方式
在文档中,您可以使用以下命令来检查拼写和某些轻微的语法错误:
npm install --global spellchecker-cli
然后,您可以运行以下命令来验证拼写:
spellchecker --no-suggestions -f '**/*.md' -l zh-CN -q -d wordlist
任何拼写例外可以添加到 wordlist
文件中。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









