Giskard项目中使用本地LLM进行模型扫描的技术方案
2025-06-13 03:19:18作者:邬祺芯Juliet
在AI模型测试领域,Giskard是一个功能强大的开源工具,它能够自动检测模型中的潜在问题。然而,当用户尝试使用本地运行的LLM(如LM Studio或Ollama)进行模型扫描时,可能会遇到默认调用OpenAI API的问题。本文将深入分析这一技术挑战,并提供完整的解决方案。
问题背景分析
Giskard的扫描功能默认使用OpenAI API来生成测试数据集和进行分析。这一设计在以下场景会带来不便:
- 当用户没有OpenAI API访问权限或配额不足时
- 当用户出于隐私考虑希望使用本地部署的LLM时
- 在教学或开发环境中使用本地量化模型的情况
核心问题在于Giskard的扫描流程中,数据生成器(SimpleDataGenerator)默认使用OpenAIClient,而没有继承用户为模型配置的本地LLM客户端。
技术原理剖析
Giskard的扫描流程包含几个关键组件:
- 模型封装层:将用户模型包装为Giskard Model对象
- 数据集生成器:创建用于测试的样本数据
- 问题检测器:执行各种扫描测试
问题出现在数据集生成阶段,代码直接调用get_default_client()获取OpenAI客户端,而不是使用用户为模型配置的LLM终端。
解决方案实现
目前有两种可行的技术方案来解决这一问题:
方案一:全局设置默认LLM客户端
通过Giskard提供的API,可以全局设置LLM客户端:
from openai import OpenAI
from giskard.llm.client.openai import OpenAIClient
# 配置本地LLM客户端
client = OpenAI(base_url="http://localhost:5000/v1", api_key="lm-studio")
gsk_llm_client = OpenAIClient(model="llama2-13b", client=client)
# 设置为全局默认客户端
from giskard.llm.client import set_default_client
set_default_client(gsk_llm_client)
这种方式的优势在于:
- 一次配置,全局生效
- 支持任何兼容OpenAI API的本地LLM服务
- 配置灵活,可以自定义所有参数
方案二:修改Giskard源码
对于需要更深度定制的用户,可以修改Giskard的客户端初始化逻辑,增加对本地LLM的支持。核心修改点是:
- 在客户端选择逻辑中加入环境变量检测
- 当检测到本地LLM配置时,自动创建对应客户端
这种方案适合需要长期使用本地LLM的场景,但需要维护自定义的Giskard版本。
最佳实践建议
- 性能考量:本地LLM的响应速度可能较慢,建议适当调整超时设置
- 错误处理:增加对本地服务可用性的检测
- 资源管理:注意本地LLM的内存和显存占用
- 模型兼容性:确保本地LLM支持必要的功能调用
技术展望
随着本地LLM生态的发展,未来Giskard可能会原生支持更多本地LLM选项。目前的技术方案已经能够满足大多数使用场景,让开发者能够在完全本地的环境中使用Giskard的全部功能。
对于企业用户,同样的原理可以应用于内部LLM服务,只需将base_url指向内部API终端即可。这种灵活性使得Giskard能够适应各种部署环境和安全要求。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660