Giskard项目中使用本地LLM进行模型扫描的技术方案
2025-06-13 10:12:55作者:邬祺芯Juliet
在AI模型测试领域,Giskard是一个功能强大的开源工具,它能够自动检测模型中的潜在问题。然而,当用户尝试使用本地运行的LLM(如LM Studio或Ollama)进行模型扫描时,可能会遇到默认调用OpenAI API的问题。本文将深入分析这一技术挑战,并提供完整的解决方案。
问题背景分析
Giskard的扫描功能默认使用OpenAI API来生成测试数据集和进行分析。这一设计在以下场景会带来不便:
- 当用户没有OpenAI API访问权限或配额不足时
- 当用户出于隐私考虑希望使用本地部署的LLM时
- 在教学或开发环境中使用本地量化模型的情况
核心问题在于Giskard的扫描流程中,数据生成器(SimpleDataGenerator)默认使用OpenAIClient,而没有继承用户为模型配置的本地LLM客户端。
技术原理剖析
Giskard的扫描流程包含几个关键组件:
- 模型封装层:将用户模型包装为Giskard Model对象
- 数据集生成器:创建用于测试的样本数据
- 问题检测器:执行各种扫描测试
问题出现在数据集生成阶段,代码直接调用get_default_client()获取OpenAI客户端,而不是使用用户为模型配置的LLM终端。
解决方案实现
目前有两种可行的技术方案来解决这一问题:
方案一:全局设置默认LLM客户端
通过Giskard提供的API,可以全局设置LLM客户端:
from openai import OpenAI
from giskard.llm.client.openai import OpenAIClient
# 配置本地LLM客户端
client = OpenAI(base_url="http://localhost:5000/v1", api_key="lm-studio")
gsk_llm_client = OpenAIClient(model="llama2-13b", client=client)
# 设置为全局默认客户端
from giskard.llm.client import set_default_client
set_default_client(gsk_llm_client)
这种方式的优势在于:
- 一次配置,全局生效
- 支持任何兼容OpenAI API的本地LLM服务
- 配置灵活,可以自定义所有参数
方案二:修改Giskard源码
对于需要更深度定制的用户,可以修改Giskard的客户端初始化逻辑,增加对本地LLM的支持。核心修改点是:
- 在客户端选择逻辑中加入环境变量检测
- 当检测到本地LLM配置时,自动创建对应客户端
这种方案适合需要长期使用本地LLM的场景,但需要维护自定义的Giskard版本。
最佳实践建议
- 性能考量:本地LLM的响应速度可能较慢,建议适当调整超时设置
- 错误处理:增加对本地服务可用性的检测
- 资源管理:注意本地LLM的内存和显存占用
- 模型兼容性:确保本地LLM支持必要的功能调用
技术展望
随着本地LLM生态的发展,未来Giskard可能会原生支持更多本地LLM选项。目前的技术方案已经能够满足大多数使用场景,让开发者能够在完全本地的环境中使用Giskard的全部功能。
对于企业用户,同样的原理可以应用于内部LLM服务,只需将base_url指向内部API终端即可。这种灵活性使得Giskard能够适应各种部署环境和安全要求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
389
Ascend Extension for PyTorch
Python
248
284
暂无简介
Dart
701
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
274
329
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
280
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871