KCP项目下载及安装教程
2024-12-05 07:08:18作者:秋泉律Samson
1. 项目介绍
KCP(K-Closest Points and Maximum Clique Pruning)是一个高效的3D激光扫描匹配算法,主要用于点云数据的局部配准。该项目由Yu-Kai Lin、Wen-Chieh Lin和Chieh-Chih Wang开发,并在IEEE Robotics and Automation Letters (RA-L) 2022上发表。KCP通过考虑每个源点的k个最近点,并使用最大团剪枝方法来拒绝异常对应关系,从而实现高效且有效的3D激光扫描匹配。
2. 项目下载位置
KCP项目的源代码托管在GitHub上。您可以通过以下命令从GitHub仓库中克隆项目:
git clone https://github.com/StephLin/KCP.git
3. 项目安装环境配置
3.1 系统要求
KCP项目最初在Ubuntu 18.04上开发,建议使用相同或类似版本的Linux系统进行安装。以下是安装所需的依赖项:
- GCC 7.5或更高版本
- CMake 3.11或更高版本
- Git
- Eigen3 3.3或更高版本
- nanoflann
- TEASER++
3.2 依赖项安装
3.2.1 安装GCC、CMake、Git和Eigen3
首先,更新系统包并安装所需的依赖项:
sudo apt update
sudo apt install -y g++ build-essential libeigen3-dev git software-properties-common lsb-release
3.2.2 安装nanoflann
克隆nanoflann仓库并编译安装:
cd ~
git clone https://github.com/jlblancoc/nanoflann
cd nanoflann
mkdir build && cd build
cmake -DNANOFLANN_BUILD_EXAMPLES=OFF -DNANOFLANN_BUILD_TESTS=OFF ..
make
sudo make install
3.2.3 安装TEASER++
克隆TEASER++仓库并编译安装:
cd ~
git clone https://github.com/MIT-SPARK/TEASER-plusplus
cd TEASER-plusplus
git checkout d79d0c67
mkdir build && cd build
cmake -DBUILD_TESTS=OFF -DBUILD_PYTHON_BINDINGS=OFF -DBUILD_DOC=OFF ..
make
sudo make install
3.3 环境配置示例
以下是环境配置的示例图片:

4. 项目安装方式
4.1 克隆项目
首先,克隆KCP项目到本地:
git clone https://github.com/StephLin/KCP.git
cd KCP
4.2 编译项目
4.2.1 不带Python绑定
mkdir build && cd build
cmake ..
make
4.2.2 带Python绑定
mkdir build && cd build
cmake -DKCP_BUILD_PYTHON_BINDING=ON -DPYTHON_EXECUTABLE=$(which python3) ..
make
4.3 安装项目(可选)
如果您希望将KCP库安装到系统中,可以使用以下命令:
sudo make install
5. 项目处理脚本
KCP项目提供了两个示例脚本,分别用于C++和Python。这些示例脚本使用nuScenes的LiDAR数据进行配准。
5.1 C++示例
#include <kcp/solver.hpp>
int main() {
auto params = kcp::KCP::Params();
params.k = 2;
params.verbose = false;
params.teaser.noise_bound = 0.06;
auto solver = kcp::KCP(params);
// 其他代码
return 0;
}
5.2 Python示例
import pykcp
params = pykcp.KCPParams()
params.k = 2
params.verbose = False
params.teaser.noise_bound = 0.06
solver = pykcp.KCP(params)
# 其他代码
通过以上步骤,您可以成功下载、安装并运行KCP项目。希望这篇教程对您有所帮助!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896