首页
/ PEFT项目中的LoRA微调与模型保存问题解析

PEFT项目中的LoRA微调与模型保存问题解析

2025-05-12 07:02:50作者:董宙帆

前言

在大型语言模型(LLM)的微调过程中,参数高效微调(PEFT)技术因其显著降低计算资源需求而广受欢迎。其中,LoRA(Low-Rank Adaptation)是最常用的PEFT方法之一。本文将深入分析在使用PEFT进行LoRA微调时可能遇到的模型保存问题,特别是关于adapter_model.bin和adapter_config.json文件缺失的情况。

问题现象

许多开发者在完成LoRA微调后,期望在输出目录中找到以下两个关键文件:

  1. adapter_model.bin - 包含适配器的权重参数
  2. adapter_config.json - 包含适配器的配置信息

然而在实际操作中,这些文件有时会神秘消失,只出现在检查点(checkpoints)文件夹中,而最终的输出目录却缺少这些关键文件。

问题根源分析

经过深入研究发现,这个问题通常与模型保存前的操作流程有关,特别是以下两个关键点:

  1. merge_and_unload()方法的影响:该方法会将LoRA适配器的权重合并到基础模型中,并返回一个普通的transformers模型,而非PEFT模型。此时再调用save_pretrained()保存的是完整模型权重,而非单独的适配器文件。

  2. 保存时机不当:如果在merge_and_unload()之后才保存模型,自然无法获得独立的适配器文件,因为此时模型已经不再是PEFT模型结构。

正确的保存流程

为了确保能正确保存LoRA适配器文件,建议采用以下最佳实践:

  1. 先保存适配器再合并
# 训练完成后先保存PEFT模型
model.save_pretrained(output_dir)

# 如果需要合并权重再进行推理
if merge:
    merged_model = model.merge_and_unload()
    merged_model.save_pretrained(merged_output_dir)
  1. 理解merge_and_unload的适用场景:该方法主要用于推理阶段,目的是减少适配器带来的计算开销。在训练和保存阶段通常不需要调用此方法。

常见误区

  1. 冗余的add_adapter调用:使用get_peft_model()后不需要再调用add_adapter(),除非需要添加多个适配器。

  2. 错误的模型类型判断:merge_and_unload()会改变模型类型,从PeftModel变为普通模型,这一点容易被忽视。

技术建议

  1. 调试技巧:在保存前打印model的类型(type(model)),确认是否为PeftModelForCausalLM或类似类型。

  2. 版本兼容性:确保使用的peft库版本足够新,旧版本可能存在保存功能不完善的问题。

  3. 目录结构管理:建议将适配器文件与完整模型保存在不同目录,避免混淆。

总结

正确保存LoRA适配器文件需要对PEFT的工作机制有清晰理解。关键是要区分PEFT模型和普通transformers模型的不同保存行为,并合理安排保存时机。merge_and_unload()是一个强大的工具,但需要在正确的场景下使用。遵循本文的建议,开发者可以避免常见的保存问题,确保微调成果得到妥善保存。

对于大多数应用场景,直接保存PEFT模型(包含适配器)是更推荐的做法,这样可以保持模型的灵活性,便于后续的进一步微调或适配器切换。只有在特定性能要求的推理场景下,才需要考虑合并权重这一步骤。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0