NeMo-Guardrails 中如何获取自检输出的原始消息
2025-06-12 09:52:39作者:宣聪麟
在 NeMo-Guardrails 项目中,开发者在使用 self_check_output
功能时,经常会遇到需要保留原始消息和防护栏输出作为警告的需求。本文将深入探讨这一问题的解决方案。
问题背景
当使用 NeMo-Guardrails 的自检输出功能时,系统会拦截不符合规范的消息。但开发者有时希望:
- 保留原始用户输入消息
- 获取被拦截的机器人响应内容
- 将这些信息以警告形式呈现给用户
解决方案
方法一:修改拒绝响应模板
最直接的方法是修改 bot refuse to respond
的规范模板。在这个模板中,可以通过变量访问用户消息($user_message
)和机器人响应($bot_message
)。
示例模板定义:
define bot refuse to respond
"抱歉,我无法回应此请求。{% if user_message %}被拦截的用户消息:'{{ user_message }}'。{% endif %}{% if bot_message %}被拦截的机器人消息:'{{ bot_message }}'。{% endif %}"
这种方法的优势在于:
- 同时适用于输入和输出自检
- 保持了统一的拒绝响应格式
- 可根据需要灵活调整显示内容
方法二:使用响应召回机制
另一种解决方案是创建专门的流程来管理自检输出:
define flow self check output
$allowed = execute self_check_output
bot recall respond
if not $allowed
bot refuse to respond
stop
define bot recall respond
"{{ bot_message }}"
define bot refuse to respond
"**检测到异常内容,请进一步核查**"
这种方法的特点:
- 分离了正常响应和拒绝响应的逻辑
- 提供了更精细的控制能力
- 便于添加额外的处理步骤
最佳实践建议
-
谨慎显示拦截内容:出于安全考虑,不建议直接将拦截的输出内容完整显示给最终用户。
-
使用即将发布的功能:在 NeMo-Guardrails 0.10.0 版本中,新增了 RailsException 支持,这将提供更优雅的处理方式。
-
保持一致性:无论采用哪种方案,都应确保整个应用中拒绝响应的风格一致。
-
考虑用户体验:拒绝消息应当既明确又友好,避免给用户造成困惑。
技术实现原理
NeMo-Guardrails 的自检机制基于预定义的规则和机器学习模型,当检测到潜在问题时:
- 系统会中断正常响应流程
- 触发
refuse to respond
动作 - 根据模板生成拒绝响应
通过自定义这些模板和流程,开发者可以灵活控制最终呈现给用户的内容和形式。
总结
在 NeMo-Guardrails 中管理自检输出消息需要理解其内部工作流程和模板系统。通过合理配置拒绝响应模板或设计专门的响应流程,开发者可以实现既安全又用户友好的内容过滤机制。随着新版本的发布,这一功能还将得到进一步增强和完善。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58