TinyDNN 技术文档
2024-12-28 17:09:15作者:侯霆垣
1. 安装指南
TinyDNN 是一个纯头文件(header-only)的 C++14 深度学习库,因此无需复杂的安装过程。只需确保你的编译器支持 C++14(如 gcc 4.9+、clang 3.6+ 或 VS 2015+),然后将 tiny_dnn.h 包含到你的项目中即可。
2. 项目的使用说明
TinyDNN 适用于有限计算资源的嵌入式系统和 IoT 设备。以下是一个简单的卷积神经网络(CNN)和多层感知器(MLP)的构造示例。
构造卷积神经网络(CNN)
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;
void construct_cnn() {
using namespace tiny_dnn;
network<sequential> net;
// 添加层
net << conv(32, 32, 5, 1, 6) << tanh() // 输入:32x32x1, 5x5 卷积, 6 个滤波器
<< ave_pool(28, 28, 6, 2) << tanh() // 输入:28x28x6, 2x2 池化
<< fc(14 * 14 * 6, 120) << tanh() // 输入:14x14x6, 输出:120
<< fc(120, 10); // 输入:120, 输出:10
assert(net.in_data_size() == 32 * 32);
assert(net.out_data_size() == 10);
}
构造多层感知器(MLP)
#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;
void construct_mlp() {
network<sequential> net;
net << fc(32 * 32, 300) << sigmoid() << fc(300, 10);
assert(net.in_data_size() == 32 * 32);
assert(net.out_data_size() == 10);
}
3. 项目 API 使用文档
TinyDNN 提供了多种网络层类型、激活函数、损失函数和优化算法。以下是一些关键类的概述:
network<sequential>:顺序网络,用于构建和训练神经网络。conv:卷积层。fc:全连接层。tan_h:双曲正切激活函数。sigmoid:Sigmoid 激活函数。mse:均方误差损失函数。adagrad:Adagrad 优化算法。
更多 API 详细信息,请参考官方文档。
4. 项目安装方式
由于 TinyDNN 是头文件库,无需安装。只需将 tiny_dnn.h 包含到你的项目中即可。如果你需要编译示例程序或单元测试,你需要安装 CMake 并执行以下命令:
cmake . -DBUILD_EXAMPLES=ON
make
然后切换到 examples 目录并运行可执行文件。
如果你想要使用 IDE 如 Visual Studio 或 Xcode,你可以使用 CMake 生成相应的项目文件。
cmake . -G "Xcode" # 对于 Xcode 用户
cmake . -G "NMake Makefiles" # 对于 Windows Visual Studio 用户
然后打开 .sln 文件(在 Windows/MSVC 上)或使用 make 命令(在 Linux/Mac/Windows-Mingw 上)进行构建。
以上就是关于 TinyDNN 的技术文档,希望对您有所帮助。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493