Vizro项目中AgGrid表格数据导出的技术解析
引言
在数据可视化项目中,表格数据的交互式过滤与导出是常见的功能需求。本文将以Vizro项目为例,深入探讨如何实现AgGrid表格的过滤数据导出功能,并分析其中的技术实现原理。
问题背景
在使用Vizro构建数据看板时,开发者可能会遇到一个典型场景:当用户在AgGrid表格中应用了列过滤后,期望导出的数据仅包含过滤后的结果,而非完整数据集。然而,默认情况下,Vizro的导出功能会导出原始数据,这显然不符合用户预期。
技术原理分析
两种过滤机制的本质区别
-
服务端过滤(Server-side Filtering)
- 由Vizro的Filter组件实现
- 在数据渲染到前端前完成过滤
- 适用于大数据集,减轻前端负担
- 导出的数据会反映过滤结果
-
客户端过滤(Client-side Filtering)
- 由AgGrid内置的列过滤功能实现
- 在前端浏览器中完成数据过滤
- 提供即时响应,用户体验好
- 默认情况下不影响导出数据
导出功能的实现机制
Vizro的export_data动作默认只识别服务端过滤结果,因为它操作的是经过服务端处理后的数据。而AgGrid的客户端过滤是在数据到达浏览器后才发生的,因此需要特殊处理才能正确导出过滤结果。
解决方案实现
方案一:使用Vizro原生过滤与导出
这是最简单的实现方式,适合不需要AgGrid特定过滤功能的场景:
page = vm.Page(
components=[
vm.AgGrid(id="table", figure=dash_ag_grid(data_frame=df)),
vm.Button(text="导出数据", actions=[vm.Action(function=export_data())]),
],
controls=[vm.Filter(column="字段名")],
)
方案二:自定义AgGrid过滤数据导出
对于需要保留AgGrid丰富过滤功能的场景,可以通过自定义动作实现:
@capture("action")
def ag_grid_export():
return True
page = vm.Page(
components=[
vm.AgGrid(
id="table",
figure=dash_ag_grid(
id="underlying_table",
data_frame=df,
csvExportParams={"fileName": "export.csv"},
),
),
vm.Button(
text="导出数据",
actions=[
vm.Action(
function=ag_grid_export(),
outputs=["underlying_table.exportDataAsCsv"]
)
],
),
],
)
技术要点解析
-
组件ID的双重性:Vizro组件ID与底层AgGrid组件ID需要区分,后者用于直接操作AgGrid功能
-
动作输出绑定:通过
outputs参数将按钮动作与AgGrid的导出功能绑定 -
导出参数配置:
csvExportParams允许自定义导出文件名等选项
最佳实践建议
-
根据数据量选择过滤方式:大数据集优先考虑服务端过滤
-
明确用户需求:如果只需要基本过滤,使用Vizro原生方案更简单
-
性能考量:客户端过滤会传输全部数据,可能影响页面加载速度
-
用户体验:在导出按钮旁添加说明文字,告知用户导出范围
总结
Vizro项目提供了灵活的数据可视化解决方案,理解其底层机制可以帮助开发者更好地实现特定需求。对于AgGrid表格的过滤数据导出,关键在于区分服务端与客户端过滤的差异,并选择适当的实现方式。通过本文介绍的技术方案,开发者可以轻松实现符合用户期望的数据导出功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00