AWS Auto Inventory 项目教程
1、项目介绍
AWS Auto Inventory 是一个用 Python 编写的开源工具,旨在帮助用户快速生成 AWS 资源的详细清单报告。该工具利用 Boto3 库与 AWS 服务进行交互,能够扫描多个 AWS 区域和服务,提供全面的资源概览。通过多线程并发处理,AWS Auto Inventory 能够高效地生成报告,并具备错误处理机制和灵活的配置选项,适用于资源审计、成本优化、灾难恢复计划等多种应用场景。
2、项目快速启动
安装依赖
首先,确保您的系统上已安装 Python 3.6 或更高版本。然后,通过 pip 安装所需的 Python 库:
pip install -r requirements.txt
配置 AWS 凭证
在使用 AWS Auto Inventory 之前,您需要配置 AWS 凭证。可以通过 AWS CLI 配置,也可以直接设置环境变量:
export AWS_ACCESS_KEY_ID=<your_access_key>
export AWS_SECRET_ACCESS_KEY=<your_secret_key>
export AWS_SESSION_TOKEN=<your_session_token> # 如果使用临时凭证
运行脚本
使用以下命令启动 AWS Auto Inventory:
python scan.py -s scanfile.json
其中,scanfile.json 是一个 JSON 文件,定义了要扫描的 AWS 服务和资源。
参数说明
--scan: 指定扫描文件的路径或 URL(必填)。--regions: 指定要扫描的 AWS 区域(可选)。--output_dir: 指定结果输出目录(可选,默认是 "output")。--log_level: 设置日志级别(可选,默认是 "INFO")。--max-retries: 设置每个服务的最大重试次数(可选,默认是 3)。--retry-delay: 设置每次重试前的延迟时间(可选,默认是 2 秒)。--concurrent-regions: 设置并发处理的区域数量(可选)。--concurrent-services: 设置每个区域并发处理的服务数量(可选)。
3、应用案例和最佳实践
资源审计
定期运行 AWS Auto Inventory 可以帮助您获取最新的资源状态,用于审计和合规性检查。通过详细的资源清单,您可以确保所有资源都符合公司的政策和法规要求。
成本优化
了解所有资源的详细信息有助于识别未使用的实例,从而减少不必要的费用。通过 AWS Auto Inventory 生成的报告,您可以轻松发现闲置资源并进行优化。
灾难恢复计划
通过获取跨区域的资源清单,您可以更好地规划灾难恢复策略。AWS Auto Inventory 可以帮助您全面了解各个区域的资源分布,确保在灾难发生时能够快速恢复。
自动化运维
结合 CI/CD 流程,自动收集资源信息并驱动自动化操作,如更新配置或创建报告。AWS Auto Inventory 可以作为自动化运维流程的一部分,提高运维效率。
4、典型生态项目
AWS Code Habits
AWS Code Habits 是一个包含 Make 目标、Ansible 剧本、Jinja 模板等的库,旨在提升常见软件开发任务的效率,并增强治理。它可以与 AWS Auto Inventory 结合使用,进一步自动化和优化 AWS 资源的管理。
AWS Config
AWS Config 是 AWS 提供的一项服务,用于记录和评估 AWS 资源配置。虽然 AWS Config 提供了详细的资源配置历史记录,但 AWS Auto Inventory 可以作为补充工具,提供更灵活和定制化的资源扫描和报告功能。
AWS CloudFormation
AWS CloudFormation 允许您使用模板来定义和管理 AWS 资源。结合 AWS Auto Inventory,您可以生成当前资源的清单,并与 CloudFormation 模板进行对比,确保资源的配置与预期一致。
通过这些生态项目的结合使用,您可以构建一个更加全面和自动化的 AWS 资源管理体系。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00