首页
/ GLM-4微调过程中解决KeyError: 'loss'错误的技术分析

GLM-4微调过程中解决KeyError: 'loss'错误的技术分析

2025-06-03 18:22:40作者:咎竹峻Karen

问题背景

在使用GLM-4进行微调训练时,许多开发者可能会遇到一个常见的错误:"KeyError: 'loss'",特别是在训练完成开始评估阶段时。这个问题通常表现为模型输出中loss值为None,导致后续评估流程无法正常进行。

错误现象分析

当运行微调脚本时,系统会在评估阶段抛出KeyError异常,错误信息显示在transformers/trainer_seq2seq.py文件的prediction_step函数中无法获取loss值。从调试输出可以看到,模型返回的是CausalLMOutputWithPast对象,其中loss字段显示为None。

根本原因

经过深入分析,发现这个问题源于输入数据中labels字段的处理方式。在评估阶段,transformers库的内部机制会尝试从模型输出中获取loss值,但当输入数据中包含labels字段时,可能会导致计算流程出现异常,最终使得loss值无法正确计算和返回。

解决方案

针对这个问题,最有效的解决方法是在prediction_step函数中对inputs字典进行处理。具体操作是在获取input_ids后,检查并删除inputs中的labels字段:

if "labels" in inputs:
    del inputs["labels"]

这个修改可以确保模型在评估阶段能够正确计算并返回loss值,避免KeyError异常的发生。

技术原理

这种解决方案有效的根本原因在于:

  1. 防止了labels字段在评估阶段被重复处理
  2. 确保了模型输出的统一性
  3. 避免了transformers库内部某些特殊情况下labels字段的干扰

注意事项

开发者在实施此解决方案时需要注意:

  1. 确保只在评估阶段进行此修改
  2. 不影响训练阶段的正常labels处理
  3. 修改后需要验证模型输出的loss值是否合理

总结

GLM-4微调过程中的KeyError: 'loss'问题是一个典型的模型输出处理异常,通过合理控制输入数据的字段可以有效解决。这个案例也提醒我们在使用大型语言模型进行微调时,需要特别注意数据字段与模型内部处理逻辑的匹配关系。掌握这类问题的解决方法,对于深度学习工程师和NLP研究人员来说都是宝贵的实践经验。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8