Parler-TTS在Apple MPS设备上的性能表现与优化实践
2025-06-08 06:31:35作者:贡沫苏Truman
概述
随着PyTorch 2.4版本的发布,Apple Silicon设备通过Metal Performance Shaders(MPS)获得了对bfloat16数据类型的支持,这为在Mac设备上运行Parler-TTS文本转语音模型提供了新的可能性。本文将详细介绍在MPS设备上运行Parler-TTS的技术实现、性能表现以及优化建议。
技术实现
在MPS设备上运行Parler-TTS模型需要以下几个关键步骤:
- 确保使用PyTorch 2.4或更高版本
- 显式指定设备为MPS并启用bfloat16数据类型
- 正确处理输入数据的设备转移
示例代码如下所示:
model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler_tts_mini_v0.1").to(device="mps:0", dtype=torch.bfloat16)
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device="mps:0")
性能表现分析
根据社区测试数据,Parler-TTS在不同配置的Apple Silicon设备上表现出以下性能特征:
- M3 Max(128GB内存):生成30秒音频约需1分钟
- M2 Max(64GB内存):生成18秒音频约需5分钟
- M2(16GB内存):生成10秒音频约需3分钟
测试数据表明,推理时间与生成的音频长度呈非线性增长关系,这主要与内存使用情况有关。模型加载时约占用3GB内存,但推理过程中内存使用量会显著增加,最高可达15GB以上。
设备对比
在相同设备上对比CPU和MPS后端的性能表现:
| 音频长度(秒) | CPU推理时间(秒) | MPS推理时间(秒) |
|---|---|---|
| 1 | 7 | 10 |
| 3 | 13 | 17 |
| 7 | 30 | 44 |
| 9 | 41 | 194 |
| 18 | 71 | 308 |
从数据可以看出,对于较短的音频生成(1-3秒),MPS和CPU性能相近;但随着音频长度增加,MPS性能优势逐渐显现,特别是在高内存配置的设备上。
常见问题与解决方案
- 内存不足问题:在16GB内存设备上,建议限制生成的音频长度在10秒以内
- PyTorch版本兼容性:PyTorch 2.5版本可能出现不兼容问题,建议暂时使用2.4稳定版
- 输出通道限制:遇到"Output channels > 65536 not supported"错误时,可设置环境变量
PYTORCH_ENABLE_MPS_FALLBACK=1回退到CPU
优化建议
- 根据音频长度需求选择合适的设备配置
- 对于较长的音频生成,考虑使用更高内存的Mac设备
- 监控内存使用情况,避免因内存交换导致的性能下降
- 保持PyTorch版本更新,但注意测试新版本的稳定性
结论
Parler-TTS在Apple Silicon设备上的表现展示了MPS后端的潜力,特别是在高配置设备上。虽然目前存在一些限制,但随着PyTorch对MPS支持的不断完善,Mac设备将成为本地运行文本转语音模型的可行选择之一。开发者应根据具体需求选择合适的硬件配置和软件版本,以获得最佳的性能体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C077
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
188
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692