Parler-TTS在Apple MPS设备上的性能表现与优化实践
2025-06-08 16:21:19作者:贡沫苏Truman
概述
随着PyTorch 2.4版本的发布,Apple Silicon设备通过Metal Performance Shaders(MPS)获得了对bfloat16数据类型的支持,这为在Mac设备上运行Parler-TTS文本转语音模型提供了新的可能性。本文将详细介绍在MPS设备上运行Parler-TTS的技术实现、性能表现以及优化建议。
技术实现
在MPS设备上运行Parler-TTS模型需要以下几个关键步骤:
- 确保使用PyTorch 2.4或更高版本
- 显式指定设备为MPS并启用bfloat16数据类型
- 正确处理输入数据的设备转移
示例代码如下所示:
model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler_tts_mini_v0.1").to(device="mps:0", dtype=torch.bfloat16)
input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device="mps:0")
性能表现分析
根据社区测试数据,Parler-TTS在不同配置的Apple Silicon设备上表现出以下性能特征:
- M3 Max(128GB内存):生成30秒音频约需1分钟
- M2 Max(64GB内存):生成18秒音频约需5分钟
- M2(16GB内存):生成10秒音频约需3分钟
测试数据表明,推理时间与生成的音频长度呈非线性增长关系,这主要与内存使用情况有关。模型加载时约占用3GB内存,但推理过程中内存使用量会显著增加,最高可达15GB以上。
设备对比
在相同设备上对比CPU和MPS后端的性能表现:
| 音频长度(秒) | CPU推理时间(秒) | MPS推理时间(秒) |
|---|---|---|
| 1 | 7 | 10 |
| 3 | 13 | 17 |
| 7 | 30 | 44 |
| 9 | 41 | 194 |
| 18 | 71 | 308 |
从数据可以看出,对于较短的音频生成(1-3秒),MPS和CPU性能相近;但随着音频长度增加,MPS性能优势逐渐显现,特别是在高内存配置的设备上。
常见问题与解决方案
- 内存不足问题:在16GB内存设备上,建议限制生成的音频长度在10秒以内
- PyTorch版本兼容性:PyTorch 2.5版本可能出现不兼容问题,建议暂时使用2.4稳定版
- 输出通道限制:遇到"Output channels > 65536 not supported"错误时,可设置环境变量
PYTORCH_ENABLE_MPS_FALLBACK=1回退到CPU
优化建议
- 根据音频长度需求选择合适的设备配置
- 对于较长的音频生成,考虑使用更高内存的Mac设备
- 监控内存使用情况,避免因内存交换导致的性能下降
- 保持PyTorch版本更新,但注意测试新版本的稳定性
结论
Parler-TTS在Apple Silicon设备上的表现展示了MPS后端的潜力,特别是在高配置设备上。虽然目前存在一些限制,但随着PyTorch对MPS支持的不断完善,Mac设备将成为本地运行文本转语音模型的可行选择之一。开发者应根据具体需求选择合适的硬件配置和软件版本,以获得最佳的性能体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212