PaddleX项目中公式识别模型导出格式问题解析
2025-06-07 21:24:38作者:凤尚柏Louis
引言
在使用PaddleX进行公式识别模型开发时,开发者可能会遇到模型导出后推理出错的问题。本文将以PP-FormulaNet-L模型为例,深入分析问题原因并提供解决方案,帮助开发者正确导出和使用公式识别模型。
问题现象
当开发者使用以下命令导出PP-FormulaNet-L预训练模型时:
python main.py -c configs/modules/formula_recognition/PP-FormulaNet-L.yaml -o Global.mode=export -o Export.weight_path=/path/to/PP-FormulaNet-L_pretrained.pdparams
在后续推理过程中会出现维度不匹配的错误:
InvalidArgumentError: Broadcast dimension mismatch...
根本原因分析
这个问题源于PaddleX支持的两种模型格式差异:
- JSON格式模型:适用于PP-FormulaNet-L、PP-FormulaNet-S和UniMERNet等公式识别模型
- PDModel格式:适用于LaTeX_OCR_rec等模型
PP-FormulaNet-L等模型在静态图导出时仅支持JSON格式,而默认导出命令会产生PDModel格式,导致后续推理时出现维度不匹配的问题。
解决方案
要正确导出PP-FormulaNet-L模型,需要在导出命令前添加环境变量FLAGS_json_format_model=1:
FLAGS_json_format_model=1 python main.py -c configs/modules/formula_recognition/PP-FormulaNet-L.yaml -o Global.mode=export -o Export.weight_path=/path/to/PP-FormulaNet-L_pretrained.pdparams
不同模型的导出建议
-
PP-FormulaNet系列和UniMERNet模型:
- 必须添加
FLAGS_json_format_model=1参数 - 适用于需要轻量级部署的场景
- 必须添加
-
LaTeX_OCR_rec模型:
- 不应添加
FLAGS_json_format_model=1参数 - 在CPU环境下使用JSON格式可能导致运行失败
- 推荐使用默认的PDModel格式导出
- 不应添加
技术原理
JSON格式模型和PDModel格式的主要区别在于:
- 模型结构表示:JSON格式使用更轻量级的描述方式,适合特定场景下的公式识别
- 运行时兼容性:不同格式对硬件和运行环境的适应性存在差异
- 性能优化:特定格式可能针对某些模型架构进行了专门优化
最佳实践
- 在导出模型前,确认目标模型的推荐格式
- 对于公式识别模型,优先查阅官方文档了解格式要求
- 在测试环境中验证导出模型的推理功能
- 根据部署环境选择合适的模型格式
结论
正确理解和使用PaddleX中不同公式识别模型的导出格式,是保证模型顺利部署和推理的关键。通过本文的分析和建议,开发者可以避免常见的导出错误,提高开发效率。记住,PP-FormulaNet系列需要使用JSON格式,而LaTeX_OCR_rec则应保持默认的PDModel格式。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134