MonoDepth-FPN-PyTorch 项目使用教程
2024-09-27 14:31:18作者:廉彬冶Miranda
1. 项目目录结构及介绍
MonoDepth-FPN-PyTorch 项目的目录结构如下:
MonoDepth-FPN-PyTorch/
├── dataset/
│ └── augment.py
├── main_fpn.py
├── model_fpn.py
├── README.md
├── LICENSE
├── architecture.png
├── comparison_nyuv2.png
├── kitti.png
├── kitti_comparison.png
├── kitti_performance.png
├── metrics.png
├── nyuv2_performance.png
└── vis.ipynb
目录结构介绍:
- dataset/: 包含数据处理和数据增强的脚本,例如
augment.py
用于预处理数据。 - main_fpn.py: 项目的启动文件,负责模型的训练和测试。
- model_fpn.py: 定义了模型的架构,包括 Feature Pyramid Network (FPN) 和 ResNet101 作为主干网络。
- README.md: 项目的介绍文档,包含项目的基本信息、依赖项、运行方法等。
- LICENSE: 项目的开源许可证文件。
- architecture.png: 模型架构的示意图。
- comparison_nyuv2.png: NYU Depth V2 数据集上的性能对比图。
- kitti.png: KITTI 数据集的示意图。
- kitti_comparison.png: KITTI 数据集上的性能对比图。
- kitti_performance.png: KITTI 数据集上的性能表现图。
- metrics.png: 模型评估指标的示意图。
- nyuv2_performance.png: NYU Depth V2 数据集上的性能表现图。
- vis.ipynb: Jupyter Notebook 文件,用于可视化重建的数据。
2. 项目的启动文件介绍
main_fpn.py
main_fpn.py
是项目的启动文件,负责模型的训练和测试。以下是该文件的主要功能介绍:
- 训练模型: 通过调用
main_fpn.py
文件,可以启动模型的训练过程。训练过程中会加载数据集、定义损失函数、优化器等,并进行模型的迭代训练。 - 继续训练: 如果需要从之前保存的模型继续训练,可以使用
--r True
参数,并指定--checkepoch
参数来加载特定 epoch 的模型。 - 测试模型: 训练完成后,可以通过该文件进行模型的测试,评估模型在测试集上的性能。
使用示例:
python3 main_fpn.py --cuda --bs 6
该命令会启动模型的训练,使用 CUDA 加速,批量大小为 6。
3. 项目的配置文件介绍
MonoDepth-FPN-PyTorch 项目没有显式的配置文件,但可以通过命令行参数进行配置。以下是一些常用的命令行参数:
- --cuda: 是否使用 CUDA 加速,默认值为
False
。 - --bs: 批量大小(batch size),默认值为 1。
- --r: 是否从保存的模型继续训练,默认值为
False
。 - --checkepoch: 指定从哪个 epoch 的模型继续训练,默认值为 0。
配置示例:
python3 main_fpn.py --cuda --bs 6 --r True --checkepoch 10
该命令会从第 10 个 epoch 的模型继续训练,使用 CUDA 加速,批量大小为 6。
通过这些命令行参数,可以灵活地配置模型的训练和测试过程。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4