MonoDepth-FPN-PyTorch 项目使用教程
2024-09-27 06:19:19作者:廉彬冶Miranda
1. 项目目录结构及介绍
MonoDepth-FPN-PyTorch 项目的目录结构如下:
MonoDepth-FPN-PyTorch/
├── dataset/
│ └── augment.py
├── main_fpn.py
├── model_fpn.py
├── README.md
├── LICENSE
├── architecture.png
├── comparison_nyuv2.png
├── kitti.png
├── kitti_comparison.png
├── kitti_performance.png
├── metrics.png
├── nyuv2_performance.png
└── vis.ipynb
目录结构介绍:
- dataset/: 包含数据处理和数据增强的脚本,例如
augment.py用于预处理数据。 - main_fpn.py: 项目的启动文件,负责模型的训练和测试。
- model_fpn.py: 定义了模型的架构,包括 Feature Pyramid Network (FPN) 和 ResNet101 作为主干网络。
- README.md: 项目的介绍文档,包含项目的基本信息、依赖项、运行方法等。
- LICENSE: 项目的开源许可证文件。
- architecture.png: 模型架构的示意图。
- comparison_nyuv2.png: NYU Depth V2 数据集上的性能对比图。
- kitti.png: KITTI 数据集的示意图。
- kitti_comparison.png: KITTI 数据集上的性能对比图。
- kitti_performance.png: KITTI 数据集上的性能表现图。
- metrics.png: 模型评估指标的示意图。
- nyuv2_performance.png: NYU Depth V2 数据集上的性能表现图。
- vis.ipynb: Jupyter Notebook 文件,用于可视化重建的数据。
2. 项目的启动文件介绍
main_fpn.py
main_fpn.py 是项目的启动文件,负责模型的训练和测试。以下是该文件的主要功能介绍:
- 训练模型: 通过调用
main_fpn.py文件,可以启动模型的训练过程。训练过程中会加载数据集、定义损失函数、优化器等,并进行模型的迭代训练。 - 继续训练: 如果需要从之前保存的模型继续训练,可以使用
--r True参数,并指定--checkepoch参数来加载特定 epoch 的模型。 - 测试模型: 训练完成后,可以通过该文件进行模型的测试,评估模型在测试集上的性能。
使用示例:
python3 main_fpn.py --cuda --bs 6
该命令会启动模型的训练,使用 CUDA 加速,批量大小为 6。
3. 项目的配置文件介绍
MonoDepth-FPN-PyTorch 项目没有显式的配置文件,但可以通过命令行参数进行配置。以下是一些常用的命令行参数:
- --cuda: 是否使用 CUDA 加速,默认值为
False。 - --bs: 批量大小(batch size),默认值为 1。
- --r: 是否从保存的模型继续训练,默认值为
False。 - --checkepoch: 指定从哪个 epoch 的模型继续训练,默认值为 0。
配置示例:
python3 main_fpn.py --cuda --bs 6 --r True --checkepoch 10
该命令会从第 10 个 epoch 的模型继续训练,使用 CUDA 加速,批量大小为 6。
通过这些命令行参数,可以灵活地配置模型的训练和测试过程。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
495
3.63 K
Ascend Extension for PyTorch
Python
300
336
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
475
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
301
127
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
871